Skip to main content

Polyadenylation Machineries in Intestinal Parasites: Latest Advances in the Protozoan Parasite Entamoeba histolytica

  • Conference paper
  • First Online:
Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology

Abstract

In eukaryotic cells, nuclear cleavage and polyadenylation of mRNA precursors (pre-mRNA) generate functional protein encoding transcripts that can be exported to the cytoplasm and translated. Nevertheless, in protozoan parasites that cause intestinal infections in  humans, the current knowledge on mRNA 3′-end formation is limited. We performed a genomic survey in Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum databases and predicted that polyadenylation machineries are generally well conserved in these pathogens. Notably, most parasites have the 25 kDa subunit of the heterotetrameric CFIm (CFIm25), the 77 kDa subunit of the heterohexameric CPSF (CPSF73) and the poly(A) polymerase (PAP), which are essential proteins for poly(A) site selection, RNA cleavage and poly(A) tail synthesis. However, several differences exist that may be useful to develop new methods to control these pathogens. Taking E. histolytica as a study model, we focused on the EhCFIm25 protein, because it is the unique subunit of CFIm in this pathogen, whereas active CFIm in humans is formed by two 25 kDa subunits interacting with two larger subunits. Human and parasite CFIm25 proteins only share 32% identity but they have a similar three-dimensional folding. Interestingly, trophozoites loose virulence and are induced to death when EhCFIm25 expression is silenced, which denotes the relevance of this protein for E. histolytica control. To assess this hypothesis, we obtained RNA aptamers that specifically recognize EhCFIm25 by using the SELEX (systematic evolution of ligands by exponential enrichment) procedure and showed that their ingestion by phagocytosis dramatically reduces trophozoites proliferation. Moreover, RNA-protein binding and molecular modeling assays allowed us to identify that the GUUG motif is the binding site of EhCFIm25, while it is the UGUA sequence for the human protein. All these observations led us to propose that aptamers targeting specific parasite proteins, alone or in combination with the conventional treatment, could represent a new tool for controlling the development of amoebiasis and other challenging parasitic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3′-UTR:

3′-Untranslated region

APA:

Alternative polyadenylation

CF:

Cleavage factor

CPSF:

Cleavage and polyadenylation specificity factor

CstF:

Cleavage stimulation factor

ncRNAs:

Non-coding RNAs

PABPN1:

Poly(A) binding protein

PAP:

Poly(A) polymerase

pre-mRNA:

mRNA precursors

SELEX:

Systematic evolution of ligands by exponential enrichment

References

  • Brown, K. M., & Gilmartin, G. M. (2003). A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im. Molecular Cell, 12, 1467–1476.

    Article  CAS  Google Scholar 

  • Chan, S. L., Huppertz, I., Yao, C., Weng, L., Moresco, J. J., Yates, J. R., et al. (2014). CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing. Genes & Development, 28, 2370–2380.

    Article  Google Scholar 

  • Chen, W., Jia, Q., Song, Y., Fu, H., Wei, G., & Ni, T. (2017). Alternative polyadenylation: Methods, findings, and impacts methods and findings of alternative polyadenylation. Genomics, Proteomics and Bioinformatics, 15, 287–300.

    Article  Google Scholar 

  • Davis, A. N., Haque, R., & Petri, W. A. J. (2002). Update on protozoan parasites of the intestine. Current Opinion in Gastroenterology, 18, 10–14.

    Article  Google Scholar 

  • Dominski, Z., Yang, X., Purdy, M., Wagner, E. J., & Marzluff, W. F. (2005). A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Molecular and Cellular Biology, 25, 1489–1500.

    Article  CAS  Google Scholar 

  • García-Vivas, J., López-Camarillo, C., Azuara-Liceaga, E., Orozco, E., & Marchat, L. A. (2005). Entamoeba histolytica: Cloning and expression of the poly(A) polymerase EhPAP. Experimental Parasitology, 110, 226–232.

    Article  Google Scholar 

  • Gilmartin, G. M. (2005). Eukaryotic mRNA 3′ processing: A common means to different ends. Genes & Development, 19, 2517–2521.

    Article  CAS  Google Scholar 

  • Hendriks, E. F., Abdul-Razak, A., & Matthews, K. R. (2003). tbCPSF30 depletion by RNA interference disrupts polycistronic RNA processing in Trypanosoma brucei. Journal of Biological Chemistry, 278, 26870–26878.

    Article  CAS  Google Scholar 

  • Jafari Najaf Abadi, M. H., Shafabakhsh, R., Asemi, Z., Mirzaei, H. R., Sahebnasagh, R., Mirzei, H., et al. (2019). CFIm25 and alternative polyadenylation: Conflicting roles in cancer. Cancer Letters, 459, 112–121.

    Article  CAS  Google Scholar 

  • Jalkanen, A. L., Coleman, S. J., & Wilusz, J. (2014). Determinants and implications of mRNA poly(A) tail size–does this protein make my tail look big? Seminars in Cell & Developmental Biology, 34, 24–32.

    Article  CAS  Google Scholar 

  • Kubo, T., Wada, T., Yamaguchi, Y., Shimizu, A., & Handa, H. (2006). Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs. Nucleic Acids Research, 34, 6264–6271.

    Article  CAS  Google Scholar 

  • Kühn, U., Gündel, M., Knoth, A., Kerwitz, Y., Rüdel, S., & Wahle, E. (2009). Poly(A) tail length is controlled by the nuclear Poly(A)-binding protein regulating the interaction between Poly(A) polymerase and the cleavage and polyadenylation specificity factor. Journal of Biological Chemistry, 284, 22803–22814.

    Article  Google Scholar 

  • López-Camarillo, C., Orozco, E., & Marchat, L. A. (2005). Entamoeba histolytica: Comparative genomics of the pre-mRNA 3′ end processing machinery. Experimental Parasitology, 110, 184–190.

    Article  Google Scholar 

  • Neve, J., Patel, R., Wang, Z., Louey, A., & Furger, A. M. (2017). Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biology, 14, 865–890.

    Article  Google Scholar 

  • Ospina-Villa, J. D., Dufour, A., Weber, C., Ramirez-Moreno, E., Zamorano-Carrillo, A., Guillen, N., et al. (2018). Targeting the polyadenylation factor EhCFIm25 with RNA aptamers controls survival in Entamoeba histolytica. Scientific Reports 8.

    Google Scholar 

  • Ospina-Villa, J. D., Guillén, N., Lopez-Camarillo, C., Soto-Sanchez, J., Ramirez-Moreno, E., Garcia-Vazquez, R., et al. (2017). Silencing the cleavage factor CFIm25 as a new strategy to control Entamoeba histolytica parasite. Journal of Microbiology, 55, 783–791.

    Article  CAS  Google Scholar 

  • Ospina-Villa, J. D.,  Tovar-Ayona, B. J.,  López-Camarillo, C.,  Soto-Sánchez, J.,  Ramírez-Moreno, Castañón-Sánchez, C. A., Marchat, L. A. (2020). mRNA Polyadenylation Machineries in Intestinal Protozoan Parasites. Journal of Eukaryotic Microbiology.

    Google Scholar 

  • Palencia, A., Bougdour, A., Brenier-Pinchart, M. P., Touquet, B., Bertini, R. L., Sensi, C., Gay, G., et al. (2017). Targeting Toxoplasma gondii CPSF3 as a new approach to control toxoplasmosis. EMBO Molecular Medicine, 1–10.

    Google Scholar 

  • Pezet-Valdez, M., Fernández-Retana, J., Ospina-Villa, J. D., Ramírez-Moreno, M. E., Orozco, E., Charcas-López, S., et al. (2013). The 25 kDa subunit of cleavage factor Im Is a RNA-binding protein that interacts with the poly(A) polymerase in Entamoeba histolytica. PLoS ONE, 8, e67977.

    Article  CAS  Google Scholar 

  • Pineda, E., & Perdomo, D. (2017) Entamoeba histolytica under oxidative stress: What countermeasure mechanisms are in place? 6, 44.

    Google Scholar 

  • Raabe, T., Bollum, F. J., & Manley, J. L. (1991). Primary structure and expression of bovine poly(A) polymerase. Nature, 353, 229–234.

    Article  CAS  Google Scholar 

  • Ryan, K., Calvo, O., & Manley. J. L. (2004). Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. 10, 565–573.

    Google Scholar 

  • Sagawa, F., Ibrahim, H., Morrison, A. L., Wilusz, C. J., & Wilusz, J. (2011). Nucleophosmin deposition during mRNA 3′ end processing influences poly(A) tail length. The EMBO Journal, 30, 3994–4005.

    Article  CAS  Google Scholar 

  • Sidik, S. M., Huet, D., Ganesan, S. M., Huynh, M., Wang, T., Nasamu, A. S., et al. (2016). A genome-wide CRISPR screen in toxoplasma identifies essential Apicomplexan Genes. Cell, 166, 1423–1435.

    Article  CAS  Google Scholar 

  • Silva, M. T. N., Santana, J. V., Bragagnoli, G., da Marinho, A. M., & Malagueño, N. E. (2014). Prevalence of Entamoeba histolytica/Entamoeba dispar in the city of Campina Grande, in northeastern Brazil. Journal of the São Paulo Institute of Tropical Medicine, 56, 451–454.

    Article  Google Scholar 

  • Sonoiki, E., Ng, C. L., Lee, M. C. S., Guo, D., Zhang, Y. K., Zhou, Y., et al. (2017). A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nature Communications, 8, 14574.

    Article  Google Scholar 

  • Sun, Y., Zhang, Y., Hamilton, K., Manley, J. L., Shi, Y., Walz, T., et al. (2017). Molecular basis for the recognition of the human AAUAAA polyadenylation signal. Proceedings of the National Academy of Sciences of the United States of America, 115, E1419–E1428.

    Article  Google Scholar 

  • Tian, B., Hu, J., Zhang, H., & Lutz, C. S. (2005). A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Research, 33, 201–212.

    Article  CAS  Google Scholar 

  • Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.

    Article  CAS  Google Scholar 

  • Xiang, K., Tong, L., & Manley, J. L. (2014). Delineating the Structural Blueprint of the Pre-mRNA 3′-End Processing Machinery. Molecular and Cellular Biology, 34, 1894–1910.

    Article  Google Scholar 

  • Yang, Q., Gilmartin, G. M., & Doublie, S. (2011). The structure of human cleavage factor I(m) hints at functions beyond UGUA-specific RNA binding: A role in alternative polyadenylation and a potential link to 5′ capping and splicing. RNA Biology, 8, 748–753.

    Article  CAS  Google Scholar 

  • Zamorano, A., López-Camarillo, C., Orozco, E., Weber, C., Guillen, N., & Marchat, L. A. (2008). In silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation. Computational Biology and Chemistry, 32, 256–263.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by ECOS/ANUIES/SEP/CONACyT (France-Mexico), SEP/CONACyT and SIP/IPN (Mexico).

Conflicts of Interest

The authors declare no conflict of interest. The founding sponsors had no role in the design of the experiments and the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence A. Marchat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ospina-Villa, J.D., Tovar-Ayona, B.J., Guillen, N., Ramírez-Moreno, E., López-Camarillo, C., Marchat, L.A. (2020). Polyadenylation Machineries in Intestinal Parasites: Latest Advances in the Protozoan Parasite Entamoeba histolytica. In: Guillen, N. (eds) Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-44826-4_23

Download citation

Publish with us

Policies and ethics