Skip to main content

Resolving Amoebozoan Encystation from Dictyostelium Evo-Devo and Amoebozoan Comparative Genomics

  • Conference paper
  • First Online:
Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology

Abstract

Amoebozoa, such as Entamoeba and Acanthamoeba, survive environmental stress by encystment, but also comprise the Dictyostelia which form spores in multicellular fruiting bodies to survive starvation stress. Sporulation is triggered by cAMP activation of cAMP-dependent protein kinase (PKA), with cAMP levels being controlled by the adenylate cyclases ACG and ACR and the phosphodiesterase RegA. Many Dictyostelia can also alternatively encyst and we showed that environmental stress acts on ACG and ACR to increase cAMP and thereby activate PKA to trigger encystation, with RegA preventing precocious encystation and inducing cyst germination. RegA activity requires phosphorylation of its response regulator domain, which is controlled by Sensor Histidine Kinases/Phosphatases (SHKPs), which in Dictyostelium respond to developmental signals. Comparative genomics showed that RegA, AcrA and PKA and a wealth of SHKPs are deeply conserved in Amoebozoa, where SHKs may sense food and SHPs environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, E. S., Davids, B. J., Robles, L. D., Loflin, C. E., Gillin, F. D., & Chakrabarti, R. (2001). Possible roles of protein kinase A in cell motility and excystation of the early diverging eukaryote Giardia lamblia. Journal of Biological Chemistry, 276(13), 10320–10329.

    Article  CAS  Google Scholar 

  • Adam, R. D., Dahlstrom, E. W., Martens, C. A., Bruno, D. P., Barbian, K. D., Ricklefs, S. M., et al. (2013). Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig). Genome Biology and Evolution, 5(12), 2498–2511. https://doi.org/10.1093/gbe/evt197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjard, C., & Loomis, W. F. (2005). Peptide signaling during terminal differentiation of dictyostelium. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7607–7611.

    Article  CAS  Google Scholar 

  • Annesley, S. J., & Fisher, P. R. (2009). Dictyostelium discoideum-a model for many reasons. Molecular and Cellular Biochemistry, 329(1–2), 73–91. https://doi.org/10.1007/s11010-009-0111-8.

  • Anwar, A., Khan, N. A., & Siddiqui, R. (2018). Combating Acanthamoeba spp. cysts: What are the options? Parasit Vectors, 11(1), 26. https://doi.org/10.1186/s13071-017-2572-z.

  • Aqeel, Y., Siddiqui, R., & Khan, N. A. (2013). Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellani. Parasitology Research, 112(3), 1221–1227. https://doi.org/10.1007/s00436-012-3254-6.

    Article  PubMed  Google Scholar 

  • Arroyo-Begovich, A., Carabez-Trejo, A., & Ruiz-Herrera, J. (1980). Identification of the structural component in the cyst wall of Entamoeba invadens. The Journal of Parasitology, 66(5), 735–741.

    Article  CAS  Google Scholar 

  • Chen, Z. H., Singh, R., Cole, C., Lawal, H. M., Schilde, C., Febrer, M., et al. (2017). Adenylate cyclase A acting on PKA mediates induction of stalk formation by cyclic diguanylate at the Dictyostelium organizer. Proceedings of the National Academy of Sciences of the United States of America, 114(3), 516–521. https://doi.org/10.1073/pnas.1608393114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., et al. (2013). Genome of Acanthamoeba castellani highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biology, 14(2), R11. https://doi.org/10.1186/gb-2013-14-2-r11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppi, A., & Eichinger, D. (1999). Regulation of Entamoeba invadens encystation and gene expression with galactose and N-acetylglucosamine. Molecular and Biochemical Parasitology, 102(1), 67–77.

    Article  CAS  Google Scholar 

  • Coppi, A., Merali, S., & Eichinger, D. (2002). The enteric parasite Entamoeba uses an autocrine catecholamine system during differentiation into the infectious cyst stage. The Journal of Biological Chemistry, 277(10), 8083–8090. https://doi.org/10.1074/jbc.M111895200.

    Article  CAS  PubMed  Google Scholar 

  • de Meester, F., Shaw, E., Scholze, H., Stolarsky, T., & Mirelman, D. (1990). Specific labeling of cysteine proteinases in pathogenic and nonpathogenic Entamoeba histolytica. Infection and Immunity, 58(5), 1396–1401.

    Article  Google Scholar 

  • Du, Q., & Schaap, P. (2014). The social amoeba Polysphondylium pallidum loses encystation and sporulation, but can still erect fruiting bodies in the absence of cellulose. Protist 165(5), 569–579. https://doi.org/10.1371/journal.pcbi.1003817, https://doi.org/10.1016/j.protis.2014.07.003.

  • Du, Q., Schilde, C., Birgersson, E., Chen, Z. H., McElroy, S., & Schaap, P. (2014). The cyclic AMP phosphodiesterase RegA critically regulates encystation in social and pathogenic amoebas. Cellular Signalling, 26(2), 453–459. https://doi.org/10.1016/j.cellsig.2013.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichinger, L., Pachebat, J. A., Glockner, G., Rajandream, M. A., Sucgang, R., Berriman, M., et al. (2005). The genome of the social amoeba Dictyostelium discoideum. Nature, 435(7038), 43–57.

    Article  CAS  Google Scholar 

  • Fritz-Laylin, L. K., Prochnik, S. E., Ginger, M. L., Dacks, J. B., Carpenter, M. L., Field, M. C., et al. (2010). The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell, 140(5), 631–642. https://doi.org/10.1016/j.cell.2010.01.032.

    Article  CAS  PubMed  Google Scholar 

  • Funamoto, S., Anjard, C., Nellen, W., & Ochiai, H. (2003). cAMP-dependent protein kinase regulates Polysphondylium pallidum development. Differentiation, 71(1), 51–61.

    Article  CAS  Google Scholar 

  • Gerwig, G. J., van Kuik, J. A., Leeflang, B. R., Kamerling, J. P., Vliegenthart, J. F., Karr, C. D., et al. (2002). The Giardia intestinalis filamentous cyst wall contains a novel beta(1-3)-N-acetyl-D-galactosamine polymer: A structural and conformational study. Glycobiology, 12(8), 499–505. https://doi.org/10.1093/glycob/cwf059.

    Article  CAS  PubMed  Google Scholar 

  • Gloeckner, G., Lawal, H. M., Felder, M., Singh, R., Singer, G., Weijer, C. J., et al. (2016). The multicellularity genes of dictyostelid social amoebas. Nature communications, 7, 12085. https://doi.org/10.1038/ncomms12085.

    Article  CAS  Google Scholar 

  • Harwood, A. J., Hopper, N. A., Simon, M.-N., Driscoll, D. M., Veron, M., & Williams, J. G. (1992). Culmination in Dictyostelium is regulated by the cAMP-dependent protein kinase. Cell, 69, 615–624.

    Article  CAS  Google Scholar 

  • Harwood, A. J., Plyte, S. E., Woodgett, J., Strutt, H., & Kay, R. R. (1995). Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell, 80, 139–148.

    Article  CAS  Google Scholar 

  • Heidel, A., Lawal, H., Felder, M., Schilde, C., Helps, N., Tunggal, B., et al. (2011). Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Research, 1882–1891. https://doi.org/10.1101/gr.121137.111.

  • Hillmann, F., Forbes, G., Novohradska, S., Ferling, I., Riege, K., Groth, M., et al. (2018a). Multiple roots of fruiting body formation in amoebozoa. Genome Biology and Evolution, 10(2), 591–606. https://doi.org/10.1093/gbe/evy011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillmann, F., Forbes, G., Novohradska, S., Ferling, I., Riege, K., Groth, M., et al. (2018b). Multiple roots of fruiting body formation in Amoebozoa. Genome Biology and Evolution. https://doi.org/10.1093/gbe/evy011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopper, N. A., Harwood, A. J., Bouzid, S., Véron, M., & Williams, J. G. (1993). Activation of the prespore and spore cell pathway of Dictyostelium differentiation by cAMP-dependent protein kinase and evidence for its upstream regulation by ammonia. EMBO Journal, 12, 2459–2466.

    Article  CAS  Google Scholar 

  • Jha, B. K., Jung, H. J., Seo, I., Kim, H. A., Suh, S. I., Suh, M. H., et al. (2014). Chloroquine has cytotoxic effect in encysting Acanthamoeba through modulation of autophagy. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/aac.03164-14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang, S., Tice, A. K., Spiegel, F. W., Silberman, J. D., Panek, T., Cepicka, I., et al. (2017). Between a pod and a hard test: The deep evolution of amoebae. Molecular Biology and Evolution, 34(9), 2258–2270. https://doi.org/10.1093/molbev/msx162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabe, Y., Morio, T., Tanaka, Y., & Schaap, P. (2018). Glycogen synthase kinase 3 promotes multicellular development over unicellular encystation in encysting Dictyostelia. Evodevo, 9, 12. https://doi.org/10.1186/s13227-018-0101-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawabe, Y., Schilde, C., Du, Q., & Schaap, P. (2015). A conserved signalling pathway for amoebozoan encystation that was co-opted for multicellular development. Scientific Reports, 5, 9644. https://doi.org/10.1038/srep09644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S. H., Moon, E. K., Hong, Y., Chung, D. I., & Kong, H. H. (2015). Autophagy protein 12 plays an essential role in Acanthamoeba encystation. Experimental Parasitology, 159, 46–52. https://doi.org/10.1016/j.exppara.2015.08.013.

    Article  CAS  PubMed  Google Scholar 

  • Konijn, T. M., Van De Meene, J. G., Bonner, J. T., & Barkley, D. S. (1967). The acrasin activity of adenosine-3’,5’-cyclic phosphate. Proceedings of the National Academy of Sciences of the United States of America, 58(3), 1152–1154.

    Article  CAS  Google Scholar 

  • Lauwaet, T., Davids, B. J., Reiner, D. S., & Gillin, F. D. (2007). Encystation of Giardia lamblia: A model for other parasites. Current Opinion in Microbiology, 10(6), 554–559. https://doi.org/10.1016/j.mib.2007.09.011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd, D. (2014). Encystment in Acanthamoeba castellani: A review. Experimental Parasitology, 145(Suppl), S20–S27. https://doi.org/10.1016/j.exppara.2014.03.026.

    Article  PubMed  Google Scholar 

  • Loftus, B., Anderson, I., Davies, R., Alsmark, U. C., Samuelson, J., Amedeo, P., et al. (2005). The genome of the protist parasite Entamoeba histolytica. Nature, 433(7028), 865–868.

    Article  CAS  Google Scholar 

  • Mi-ichi, F., Miyamoto, T., Takao, S., Jeelani, G., Hashimoto, T., Hara, H., et al. (2015). Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. Proceedings of the National Academy of Sciences of the United States of America, 112(22), E2884–E2890. https://doi.org/10.1073/pnas.1423718112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi-Ichi, F., Yoshida, H., & Hamano, S. (2016). Entamoeba encystation: New targets to prevent the transmission of amebiasis. PLoS Pathogens, 12(10), e1005845. https://doi.org/10.1371/journal.ppat.1005845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon, E. K., Chung, D. I., Hong, Y., & Kong, H. H. (2011). Expression levels of encystation mediating factors in fresh strain of Acanthamoeba castellani cyst ESTs. Experimental Parasitology, 127(4), 811–816. https://doi.org/10.1016/j.exppara.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  • Moon, E. K., Chung, D. I., Hong, Y., & Kong, H. H. (2012). Protein kinase C signaling molecules regulate encystation of Acanthamoeba. Experimental Parasitology, 132(4), 524–529. https://doi.org/10.1016/j.exppara.2012.07.008.

    Article  CAS  PubMed  Google Scholar 

  • Moon, E. K., Hong, Y., Chung, D. I., Goo, Y. K., & Kong, H. H. (2014). Down-regulation of cellulose synthase inhibits the formation of endocysts in Acanthamoeba. Korean Journal of Parasitology, 52(2), 131–135. https://doi.org/10.3347/kjp.2014.52.2.131.

    Article  CAS  PubMed  Google Scholar 

  • Moon, E. K., Hong, Y., Chung, D. I., Goo, Y. K., & Kong, H. H. (2015a). Potential value of cellulose synthesis inhibitors combined with PHMB in the treatment of Acanthamoeba keratitis. Cornea, 34(12), 1593–1598. https://doi.org/10.1097/ico.0000000000000642.

    Article  PubMed  Google Scholar 

  • Moon, E. K., Hong, Y., Chung, D. I., Goo, Y. K., & Kong, H. H. (2016). Identification of protein arginine methyltransferase 5 as a regulator for encystation of acanthamoeba. Korean Journal of Parasitology, 54(2), 133–138. https://doi.org/10.3347/kjp.2016.54.2.133.

    Article  CAS  PubMed  Google Scholar 

  • Moon, E. K., Hong, Y., Chung, D. I., & Kong, H. H. (2013). Identification of atg8 isoform in encysting acanthamoeba. Korean Journal of Parasitology, 51(5), 497–502. https://doi.org/10.3347/kjp.2013.51.5.497.

    Article  CAS  PubMed  Google Scholar 

  • Moon, E. K., Kim, S. H., Hong, Y., Chung, D. I., Goo, Y. K., & Kong, H. H. (2015b). Autophagy inhibitors as a potential antiamoebic treatment for Acanthamoeba keratitis. Antimicrobial Agents and Chemotherapy, 59(7), 4020–4025. https://doi.org/10.1128/aac.05165-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon, E. K., & Kong, H. H. (2012). Short-cut pathway to synthesize cellulose of encysting Acanthamoeba. Korean Journal of Parasitology, 50(4), 361–364. https://doi.org/10.3347/kjp.2012.50.4.361.

    Article  CAS  PubMed  Google Scholar 

  • Pitt, G. S., Milona, N., Borleis, J., Lin, K. C., Reed, R. R., & Devreotes, P. N. (1992). Structurally distinct and stage-specific adenylyl cyclase genes play different roles in Dictyostelium development. Cell, 69, 305–315.

    Article  CAS  Google Scholar 

  • Raizada, M. K., & Murti, C. R. K. (1972). Transformation of trophic Hartmannella culbertsoni into viable cysts by cyclic 3’,5’-adenosine monophosphate. Journal of Cell Biology, 52(3), 743–748.

    Article  CAS  Google Scholar 

  • Ritchie, A. V., van Es, S., Fouquet, C., & Schaap, P. (2008). From drought sensing to developmental control: Evolution of cyclic AMP signaling in social amoebas. Molecular Biology and Evolution, 25(10), 2109–2118. msn156 [pii], https://doi.org/10.1016/molbev/msn156.

  • Romeralo, M., Skiba, A., Gonzalez-Voyer, A., Schilde, C., Lawal, H., Kedziora, S., et al. (2013). Analysis of phenotypic evolution in Dictyostelia highlights developmental plasticity as a likely consequence of colonial multicellularity. Proceedings of the Biological Sciences, 280(1764), 20130976. https://doi.org/10.1098/rspb.2013.0976.

    Article  Google Scholar 

  • Schaap, P., Barrantes, I., Minx, P., Sasaki, N., Anderson, R. W., Benard, M., et al. (2015). The Physarum polycephalum genome reveals extensive use of prokaryotic two-component and metazoan-type tyrosine kinase signaling. Genome Biology and Evolution, 8(1), 109–125. https://doi.org/10.1093/gbe/evv237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaap, P., & Schilde, C. (2018). Encystation: The most prevalent and under investigated differentiation pathway of eukaryotes. Microbiology, 164(5), 727–739. https://doi.org/10.1099/mic.0.000653.

    Article  CAS  PubMed  Google Scholar 

  • Schaap, P., & Van Driel, R. (1985). Induction of post-aggregative differentiation in Dictyostelium discoideum by cAMP. Evidence of involvement of the cell surface cAMP receptor. Experimental Cell Research, 159, 388–398.

    Article  CAS  Google Scholar 

  • Schaap, P., Winckler, T., Nelson, M., Alvarez-Curto, E., Elgie, B., Hagiwara, H., et al. (2006). Molecular phylogeny and evolution of morphology in the social amoebas. Science, 314(5799), 661–663.

    Article  CAS  Google Scholar 

  • Sharma, M., Hirata, K., Herdman, S., & Reed, S. (1996). Entamoeba invadens: Characterization of cysteine proteinases. Experimental Parasitology, 84(1), 84–91. https://doi.org/10.1006/expr.1996.0092.

    Article  CAS  PubMed  Google Scholar 

  • Shaulsky, G., Fuller, D., & Loomis, W. F. (1998). A cAMP-phosphodiesterase controls PKA-dependent differentiation. Development, 125, 691–699.

    CAS  PubMed  Google Scholar 

  • Singh, M., Sharma, S., Bhattacharya, A., & Tatu, U. (2015). Heat shock protein 90 regulates encystation in Entamoeba. Frontiers in Microbiology, 6, 1125. https://doi.org/10.3389/fmicb.2015.01125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singleton, C. K., Zinda, M. J., Mykytka, B., & Yang, P. (1998). The histidine kinase dhkC regulates the choice between migrating slugs and terminal differentiation in Dictyostelium discoideum. Development Biology, 203, 345–357.

    Article  CAS  Google Scholar 

  • Soderbom, F., Anjard, C., Iranfar, N., Fuller, D., & Loomis, W. F. (1999). An adenylyl cyclase that functions during late development of Dictyostelium. Development, 126, 5463–5471.

    CAS  PubMed  Google Scholar 

  • Song, S.-M., Han, B.-I., Moon, E.-K., Lee, Y.-R., Yu, H. S., Jha, B. K., et al. (2012). Autophagy protein 16-mediated autophagy is required for the encystation of Acanthamoeba castellani. Molecular and Biochemical Parasitology, 183(2), 158–165. https://doi.org/10.1016/j.molbiopara.2012.02.013.

    Article  CAS  PubMed  Google Scholar 

  • Thomason, P. A., Traynor, D., Stock, J. B., & Kay, R. R. (1999). The RdeA-RegA system, a eukaryotic phospho-relay controlling cAMP breakdown. Journal of Biological Chemistry, 274(39), 27379–27384.

    Article  CAS  Google Scholar 

  • Urushihara, H., Kuwayama, H., Fukuhara, K., Itoh, T., Kagoshima, H., Shin, I. T., et al. (2015). Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation. BMC Genomics, 16, 80. https://doi.org/10.1186/s12864-015-1278-x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Es, S., Virdy, K. J., Pitt, G. S., Meima, M., Sands, T. W., Devreotes, P. N., et al. (1996). Adenylyl cyclase G, an osmosensor controlling germination of Dictyostelium spores. Journal of Biological Chemistry, 271, 23623–23625.

    Article  Google Scholar 

  • Vazquezdelara-Cisneros, L. G., & Arroyo-Begovich, A. (1984). Induction of encystation of Entamoeba invadens by removal of glucose from the culture medium. The Journal of Parasitology, 70(5), 629–633.

    Article  CAS  Google Scholar 

  • Wang, Z., Samuelson, J., Clark, C. G., Eichinger, D., Paul, J., Van Dellen, K., et al. (2003). Gene discovery in the Entamoeba invadens genome. Molecular and Biochemical Parasitology, 129(1), 23–31.

    Article  Google Scholar 

  • Wang, N., Soderbom, F., Anjard, C., Shaulsky, G., & Loomis, W. F. (1999). SDF-2 induction of terminal differentiation in Dictyostelium discoideum is mediated by the membrane-spanning sensor kinase DhkA. Molecular and Cellular Biology, 19(7), 4750–4756.

    Article  CAS  Google Scholar 

  • Woodgett, J. R. (1994). Regulation and functions of the glycogen synthase kinase-3 subfamily. Seminars in Cancer Biology, 5(4), 269–275.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research is funded by Welcome grant 100293/Z/12/Z, ERC Advanced grant 742288 and Leverhulme grant RPG-2016-220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Schaap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, Q., Kawabe, Y., Schaap, P. (2020). Resolving Amoebozoan Encystation from Dictyostelium Evo-Devo and Amoebozoan Comparative Genomics. In: Guillen, N. (eds) Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-44826-4_2

Download citation

Publish with us

Policies and ethics