Skip to main content

Eukaryome: Emerging Field with Profound Translational Potential

  • Conference paper
  • First Online:
Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology

Abstract

The human intestinal eukaryome comprises a diverse set of eukaryotic organisms living in the intestinal lumen. These are in permanent or transient interaction with commensal organisms such as bacteria. This interaction has a direct impact on human well-being. The eukaryome remains one of the least understood components of the gut microbiota despite its permanent association with the host during the natural selection of species. The emerging work hypothesis is that eukaryome and bacteria in synergy influence the complex mechanism underlying the microbial crosstalk with the human gut during health or disease. New microbiota studies should therefore include the characterization of the components and function of the eukaryome to discover its role in homeostasis and intestinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Microbiota is the complex community of microorganisms including bacteria but also viruses (including bacteriophages), Archaea, eukaryotes such as fungi and protozoa living in consortia in sites such as the gastrointestinal tract (Lokmer et al. 2019).

References

  • Alfellani, M. A., Jacob, A. S., Perea, N. O., Krecek, R. C., Taner-Mulla, D., Verweij, J. J., et al. (2013). Diversity and distribution of Blastocystis sp. subtypes in non-human primates. Parasitology, 140(8), 966–971.

    Article  CAS  PubMed  Google Scholar 

  • Alivisatos, A. P., Blaser, M. J., Brodie, E. L., Chun, M., Dangl, J. L., Donohue, T. J., et al. (2015). MICROBIOME. A unified initiative to harness Earth’s microbiomes. Science, 350(6260), 507–508.

    Article  CAS  PubMed  Google Scholar 

  • Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., et al. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 331(6015), 337–341.

    Article  CAS  PubMed  Google Scholar 

  • Audebert, C., Even, G., Cian, A., Loywick, A., Merlin, S., Viscogliosi, E., et al. (2016). Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Scientific Reports, 6, 25255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barratt, J. L., Harkness, J., Marriott, D., Ellis, J. T., & Stark, D. (2011). A review of Dientamoeba fragilis carriage in humans: Several reasons why this organism should be considered in the diagnosis of gastrointestinal illness. Gut Microbes, 2(1), 3–12.

    Article  PubMed  Google Scholar 

  • Bart, A., Wentink-Bonnema, E. M., Gilis, H., Verhaar, N., Wassenaar, C. J., van Vugt, M., et al. (2013). Diagnosis and subtype analysis of Blastocystis sp. in 442 patients in a hospital setting in the Netherlands. BMC Infectious Diseases, 13, 389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess, S. L., Buonomo, E., Carey, M., Cowardin, C., Naylor, C., Noor, Z., et al. (2014). Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis. MBio, 5(6), e01817.

    Google Scholar 

  • Burgess, S. L., Oka, A., Liu, B., Bolick, D. T., Oakland, D. N., Guerrant, R. L., et al. (2019). Intestinal parasitic infection alters bone marrow derived dendritic cell inflammatory cytokine production in response to bacterial endotoxin in a diet-dependent manner. PLoS Neglected Tropical Diseases, 13(7), e0007515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows, K., Ngai, L., Wong, F., Won, D., & Mortha, A. (2019). ILC2 activation by protozoan commensal microbes. International Journal of Molecular Science, 20(19).

    Google Scholar 

  • Byers, J., & Eichinger, D. (2008). Acetylation of the Entamoeba histone H4 N-terminal domain is influenced by short-chain fatty acids that enter trophozoites in a pH-dependent manner. International Journal for Parasitology, 38(1), 57–64.

    Article  CAS  PubMed  Google Scholar 

  • Byers, J., Faigle, W., & Eichinger, D. (2005). Colonic short-chain fatty acids inhibit encystation of Entamoeba invadens. Cellular Microbiology, 7(2), 269–279.

    Article  CAS  PubMed  Google Scholar 

  • Cardenas, D., Bhalchandra, S., Lamisere, H., Chen, Y., Zeng, X. L., Ramani, S., et al. (2020). Two- and three-dimensional bioengineered human intestinal tissue models for Cryptosporidium. Methods in Molecular Biology, 2052, 373–402.

    Article  CAS  PubMed  Google Scholar 

  • Chabe, M., Lokmer, A., & Segurel, L. (2017). Gut protozoa: Friends or foes of the human gut microbiota? Trends in Parasitology, 33(12), 925–934.

    Article  PubMed  Google Scholar 

  • Chudnovskiy, A., Mortha, A., Kana, V., Kennard, A., Ramirez, J. D., Rahman, A., et al. (2016). Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell, 167(2), 444–456, e414.

    Google Scholar 

  • Cobo, E. R., Kissoon-Singh, V., Moreau, F., Holani, R., & Chadee, K. (2017). MUC2 mucin and butyrate contribute to the synthesis of the antimicrobial peptide cathelicidin in response to Entamoeba histolytica- and dextran sodium sulfate-induced colitis. Infection and Immunity, 85(3).

    Google Scholar 

  • Cooper, P., Walker, A. W., Reyes, J., Chico, M., Salter, S. J., Vaca, M., et al. (2013). Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS ONE, 8(10), e76573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornick, S., Moreau, F., Gaisano, H. Y., & Chadee, K. (2017). Entamoeba histolytica-induced mucin exocytosis is mediated by VAMP8 and is critical in mucosal innate host defense. MBio, 8(5).

    Google Scholar 

  • Costello, C. M., Sorna, R. M., Goh, Y. L., Cengic, I., Jain, N. K., & March, J. C. (2014). 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Molecular Pharmaceutics, 11(7), 2030–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeCicco RePass, M. A., Chen, Y., Lin, Y., Zhou, W., Kaplan, D. L., & Ward, H. D. (2017). Novel bioengineered three-dimensional human intestinal model for long-term infection of Cryptosporidium parvum. Infection and Immunity, 85(3).

    Google Scholar 

  • Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., et al. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 167(5), 1339–1353.e1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikongue, E., & Segurel, L. (2017). Latitude as a co-driver of human gut microbial diversity? Bioessays, 39(3).

    Google Scholar 

  • Doll, J. P., & Franker, C. K. (1963). Experimental histomoniasis in gnotobiotic turkeys. I. Infection and histopathology of the bacteria-free host. Journal of Parasitology, 49, 411–414.

    Article  CAS  Google Scholar 

  • Du, Q., Schilde, C., Birgersson, E., Chen, Z. H., McElroy, S., & Schaap, P. (2014). The cyclic AMP phosphodiesterase RegA critically regulates encystation in social and pathogenic amoebas. Cellular Signalling, 26(2), 453–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutton, J. S., Hinman, S. S., Kim, R., Wang, Y., & Allbritton, N. L. (2019). Primary cell-derived intestinal models: Recapitulating physiology. Trends in Biotechnology, 37(7), 744–760.

    Article  CAS  PubMed  Google Scholar 

  • El Safadi, D., Cian, A., Nourrisson, C., Pereira, B., Morelle, C., Bastien, P., et al. (2016). Prevalence, risk factors for infection and subtype distribution of the intestinal parasite Blastocystis sp. from a large-scale multi-center study in France. BMC Infectious Diseases, 16(1), 451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Embley, T. M., & Martin, W. (2006). Eukaryotic evolution, changes and challenges. Nature, 440(7084), 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Escalante, N. K., Lemire, P., Cruz Tleugabulova, M., Prescott, D., Mortha, A., Streutker, C. J., et al. (2016). The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. Journal of Experimental Medicine, 213(13), 2841–2850.

    Article  CAS  Google Scholar 

  • Frisbee, A. L., Saleh, M. M., Young, M. K., Leslie, J. L., Simpson, M. E., Abhyankar, M. M., et al. (2019). IL-33 drives group 2 innate lymphoid cell-mediated protection during Clostridium difficile infection. Nature Communications, 10(1), 2712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galvan-Moroyoqui, J. M., Del Carmen Dominguez-Robles, M., Franco, E., & Meza, I. (2008). The interplay between Entamoeba and enteropathogenic bacteria modulates epithelial cell damage. PLoS Neglected Tropical Diseases, 2(7), e266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gerbe, F., Sidot, E., Smyth, D. J., Ohmoto, M., Matsumoto, I., Dardalhon, V., et al. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature, 529(7585), 226–230.

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist, C. A., Petri, S. E., Schneider, B. N., Reichman, D. J., Jiang, N., Begum, S., et al. (2016). Role of the gut microbiota of children in Diarrhea due to the protozoan parasite Entamoeba histolytica. Journal of Infectious Diseases, 213(10), 1579–1585.

    Article  CAS  Google Scholar 

  • Glover, M., Colombo, S. A. P., Thornton, D. J., & Grencis, R. K. (2019). Trickle infection and immunity to Trichuris muris. PLoS Pathogens, 15(11), e1007926.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goto, Y. (2019). Epithelial cells as a transmitter of signals from commensal bacteria and host immune cells. Frontiers in Immunology, 10, 2057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouba, N., & Drancourt, M. (2015). Digestive tract mycobiota: A source of infection. Médecine et Maladies Infectieuses, 45(1–2), 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Hamad, I., Raoult, D., & Bittar, F. (2016). Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: Taxonomy and detection methods. Parasite Immunology, 38(1), 12–36.

    Article  CAS  PubMed  Google Scholar 

  • Heo, I., Dutta, D., Schaefer, D. A., Iakobachvili, N., Artegiani, B., Sachs, N., et al. (2018). Modelling Cryptosporidium infection in human small intestinal and lung organoids. Nature Microbiology, 3(7), 814–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess, M., Liebhart, D., Bilic, I., & Ganas, P. (2015). Histomonas meleagridis—New insights into an old pathogen. Veterinary Parasitology, 208(1–2), 67–76.

    Article  PubMed  Google Scholar 

  • Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotez, P. J., Brindley, P. J., Bethony, J. M., King, C. H., Pearce, E. J., & Jacobson, J. (2008). Helminth infections: The great neglected tropical diseases. The Journal of Clinical Investigation, 118(4), 1311–1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howitt, M. R., Lavoie, S., Michaud, M., Blum, A. M., Tran, S. V., Weinstock, J. V., et al. (2016). Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science, 351(6279), 1329–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Mao, K., Chen, X., Sun, M. A., Kawabe, T., Li, W., et al. (2018). S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science, 359(6371), 114–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iebba, V., Santangelo, F., Totino, V., Pantanella, F., Monsia, A., Di Cristanziano, V., et al. (2016). Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Cote d’Ivoire. The Journal of Infection in Developing Countries, 10(9), 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  • Ivanov, K., II, Atarashi, N., Manel, E. L., Brodie, T., Shima, U., Karaoz, D., et al. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 139(3), 485–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer, L. R., Verma, A. K., Paul, J., & Bhattacharya, A. (2019). Phagocytosis of gut bacteria by Entamoeba histolytica. Frontiers in Cellular Infection Microbiology, 9, 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jalili-Firoozinezhad, S., Gazzaniga, F. S., Calamari, E. L., Camacho, D. M., Fadel, C. W., Bein, A., et al. (2019). A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nature Biomedical Engineering, 3(7), 520–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, M. E., Ambort, D., Pelaseyed, T., Schutte, A., Gustafsson, J. K., Ermund, A., et al. (2011). Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences, 68(22), 3635–3641.

    Article  CAS  PubMed  Google Scholar 

  • Kawabe, Y., Schilde, C., Du, Q., & Schaap, P. (2015). A conserved signalling pathway for amoebozoan encystation that was co-opted for multicellular development. Scientific Reports, 5, 9644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, H. J., Huh, D., Hamilton, G., & Ingber, D. E. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a Chip, 12(12), 2165–2174.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. J., Li, H., Collins, J. J., & Ingber, D. E. (2016). Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. National Academy of Sciences of the United States of America, 113(1), E7–15.

    CAS  Google Scholar 

  • Lee, S. C., Tang, M. S., Lim, Y. A., Choy, S. H., Kurtz, Z. D., Cox, L. M., et al. (2014). Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Neglected Tropical Diseases, 8(5), e2880.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leon-Coria, A., Kumar, M., Moreau, F., & Chadee, K. (2018). Defining cooperative roles for colonic microbiota and Muc2 mucin in mediating innate host defense against Entamoeba histolytica. PLoS Pathogens, 14(11), e1007466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, S., Roellig, D. M., Guo, Y., Li, N., Frace, M. A., Tang, K., et al. (2016). Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics, 17(1), 1006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lokmer, A., Cian, A., Froment, A., Gantois, N., Viscogliosi, E., Chabe, M., et al. (2019). Use of shotgun metagenomics for the identification of protozoa in the gut microbiota of healthy individuals from worldwide populations with various industrialization levels. PLoS ONE, 14(2), e0211139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahapatro, M., Foersch, S., Hefele, M., He, G. W., Giner-Ventura, E., McHedlidze, T., et al. (2016). Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Reports, 15(8), 1743–1756.

    Article  CAS  PubMed  Google Scholar 

  • Maizels, R. M., Smits, H. H., & McSorley, H. J. (2018). Modulation of host immunity by Helminths: The expanding repertoire of parasite effector molecules. Immunity, 49(5), 801–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manna, D., Lentz, C. S., Ehrenkaufer, G. M., Suresh, S., Bhat, A., & Singh, U. (2018).An NAD(+)-dependent novel transcription factor controls stage conversion in Entamoeba. Elife, 7.

    Google Scholar 

  • Maynard, C. L., Elson, C. O., Hatton, R. D., & Weaver, C. T. (2012). Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489(7415), 231–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDole, J. R., Wheeler, L. W., McDonald, K. G., Wang, B., Konjufca, V., Knoop, K. A., et al. (2012). Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature, 483(7389), 345–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi-ichi, F., Miyamoto, T., Takao, S., Jeelani, G., Hashimoto, T., Hara, H., et al. (2015a). Entamoeba mitosomes play an important role in encystation by association with cholesteryl sulfate synthesis. National Academy of Sciences of the United States of America, 112(22), E2884–2890.

    Article  CAS  Google Scholar 

  • Mi-ichi, F., Nozawa, A., Yoshida, H., Tozawa, Y., & Nozaki, T. (2015b). Evidence that the Entamoeba histolytica mitochondrial carrier family links mitosomal and cytosolic pathways through exchange of 3′-phosphoadenosine 5′-phosphosulfate and ATP. Eukaryotic Cell, 14(11), 1144–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi-ichi, F., Miyamoto, T., & Yoshida, H. (2017). Uniqueness of Entamoeba sulfur metabolism: Sulfolipid metabolism that plays pleiotropic roles in the parasitic life cycle. Molecular Microbiology, 106(3), 479–491.

    Article  CAS  PubMed  Google Scholar 

  • Miller, A. M. (2011). Role of IL-33 in inflammation and disease. Journal of Inflammation (London), 8(1), 22.

    Article  CAS  Google Scholar 

  • Mmbaga, B. T., & Houpt, E. R. (2017). Cryptosporidium and Giardia infections in children: A review. Pediatric Clinics of North America, 64(4), 837–850.

    Article  PubMed  Google Scholar 

  • Morton, E. R., Lynch, J., Froment, A., Lafosse, S., Heyer, E., Przeworski, M., et al. (2015). Variation in rural African gut microbiota is strongly correlated with colonization by entamoeba and subsistence. PLoS Genetics, 11(11), e1005658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nieves-Ramirez, M. E., Partida-Rodriguez, O., Laforest-Lapointe, I., Reynolds, L. A., Brown, E. M., Valdez-Salazar, A., et al. (2018). Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. MSystems, 3(3).

    Google Scholar 

  • Ohshima, K., Kanto, K., Hatakeyama, K., Ide, T., Wakabayashi-Nakao, K., Watanabe, Y., et al. (2014). Exosome-mediated extracellular release of polyadenylate-binding protein 1 in human metastatic duodenal cancer cells. Proteomics, 14(20), 2297–2306.

    Article  CAS  PubMed  Google Scholar 

  • Parfrey, L. W., Walters, W. A., & Knight, R. (2011). Microbial eukaryotes in the human microbiome: Ecology, evolution, and future directions. Frontiers in Microbiology, 2, 153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parfrey, L. W., Walters, W. A., Lauber, C. L., Clemente, J. C., Berg-Lyons, D., Teiling, C., et al. (2014). Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Frontiers in Microbiology, 5, 298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelaseyed, T., Bergstrom, J. H., Gustafsson, J. K., Ermund, A., Birchenough, G. M., Schutte, A., et al. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 260(1), 8–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, L., Li, Z. R., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. Journal of Nutrition, 139(9), 1619–1625.

    Article  CAS  Google Scholar 

  • Proctor, L. M., Creasy, H. H., Fettweis, J. M., Lloyd-Price, J., Mahurkar, A., Zhou, W., et al. (2019). The integrative human microbiome project. Nature, 569(7758), 641–648.

    Article  CAS  Google Scholar 

  • Pullan, R. L., Smith, J. L., Jasrasaria, R., & Brooker, S. J. (2014). Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasites and Vectors, 7, 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez, J. D., Sanchez, L. V., Bautista, D. C., Corredor, A. F., Florez, A. C., & Stensvold, C. R. (2014). Blastocystis subtypes detected in humans and animals from Colombia. Infection, Genetics and Evolution, 22, 223–228.

    Article  PubMed  Google Scholar 

  • Reinoso Webb, C., Koboziev, I., Furr, K. L., & Grisham, M. B. (2016). Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology, 23(2), 67–80.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, L. J., Clark, C. G., Debenham, J. J., Dubey, J. P., Kvac, M., Li, J., et al. (2019). Are molecular tools clarifying or confusing our understanding of the public health threat from zoonotic enteric protozoa in wildlife? The International Journal for Parasitology: Parasites and Wildlife, 9, 323–341.

    PubMed  PubMed Central  Google Scholar 

  • Rojas, A. A., Castro, S. C., Matondo, M., Gianetto, Q. G., Varet, H., Sismeiro, O., Legendre, R., Fernandes, J., Hardy, D., Coppée, J. Y., Olivo-Marin, J. C., & Guillen, N. (2020). Insights into amebiasis using a human-intestinal model. Cellular Microbiology, Mar 16:e13203. https://doi.org/10.1111/cmi.13203.

  • Schneider, C., O’Leary, C. E., von Moltke, J., Liang, H. E., Ang, Q. Y., Turnbaugh, P. J., et al. (2018). A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell, 174(2), 271–284, e214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaulov, Y., Shimokawa, C., Trebicz-Geffen, M., Nagaraja, S., Methling, K., Lalk, M., et al. (2018). Escherichia coli mediated resistance of Entamoeba histolytica to oxidative stress is triggered by oxaloacetate. PLoS Pathogens, 14(10), e1007295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiflett, A. M., & Johnson, P. J. (2010). Mitochondrion-related organelles in eukaryotic protists. Annual Review of Microbiology, 64, 409–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, W., & Kim, H. J. (2018). Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip. Methods in Cell Biology, 146, 135–148.

    Article  CAS  PubMed  Google Scholar 

  • Steele, S. P., Melchor, S. J., & Petri, W. A., Jr. (2016). Tuft cells: New players in colitis. Trends in Molecular Medicine, 22(11), 921–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823–1836.

    Article  CAS  PubMed Central  Google Scholar 

  • Troeger, C., Forouzanfar, M., Rao, P. C., Khalil, I., Brown, A., & Reiner, R. C. Jr. (2017). Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Infectious Diseases, 17(9), 909–948.

    Google Scholar 

  • Tovaglieri, A., Sontheimer-Phelps, A., Geirnaert, A., Prantil-Baun, R., Camacho, D. M., Chou, D. B., et al. (2019). Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. Microbiome, 7(1), 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Varet, H., Shaulov, Y., Sismeiro, O., Trebicz-Geffen, M., Legendre, R., Coppee, J. Y., et al. (2018). Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica. Scientific Reports, 8(1), 9042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma, A. K., Verma, R., Ahuja, V., & Paul, J. (2012). Real-time analysis of gut flora in Entamoeba histolytica infected patients of Northern India. BMC Microbiology, 12, 183.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Moltke, J., Ji, M., Liang, H. E., & Locksley, R. M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature, 529(7585), 221–5.

    Article  CAS  Google Scholar 

  • Wang, Y., Ahmad, A. A., Sims, C. E., Magness, S. T., & Allbritton, N. L. (2014). In vitro generation of colonic epithelium from primary cells guided by microstructures. Lab on a Chip, 14(9), 1622–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Kim, R., Sims, C. E., & Allbritton, N. L. (2019). Building a thick mucus hydrogel layer to improve the physiological relevance of in vitro primary colonic Epithelial models. Cellular and Molecular Gastroenterology and Hepatology, 8(4), 653–655.e655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, K., Gilchrist, C. A., Uddin, M. J., Burgess, S. L., Abhyankar, M. M., Moonah, S. N., et al. (2017). Microbiome-mediated neutrophil recruitment via CXCR2 and protection from amebic colitis. PLoS Pathogens, 13(8), e1006513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., et al. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zindl, C. L., Lai, J. F., Lee, Y. K., Maynard, C. L., Harbour, S. N., Ouyang, W., et al. (2013). IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis. National Academy of Sciences of the United States of America, 110(31), 12768–12773.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NG work was supported by European ERA-NET Infect-ERA program AMOEBAC (French National Agency for Research grant ANR-14-IFEC-0001-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Guillen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guillen, N. (2020). Eukaryome: Emerging Field with Profound Translational Potential. In: Guillen, N. (eds) Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-44826-4_1

Download citation

Publish with us

Policies and ethics