Skip to main content

A Study of Hydrodynamics Based Community Codes in Astrophysics

  • Conference paper
  • First Online:
Book cover Tools and Techniques for High Performance Computing (HUST 2019, SE-HER 2019, WIHPC 2019)

Abstract

Advances in mathematical models and numerical algorithms for understanding multiphysics and multiscale phenomena have made software development for simulations a large and complex task. Development and adoption of community codes is one way to address this challenge. The astrophysics community has been ahead of many other science communities in making research codes publicly available and therefore has led the development and adoption of community codes. A study of publicly available software and their penetration in the research conducted by the community can provide important insight for other communities that are facing similar issues. In this paper we analyze software available in Astrophysics Source Code Library, focusing on simulations that include hydrodynamics. We use the citation history of these codes to gauge their impact on the community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astrophysics data system. https://ui.adsabs.harvard.edu/

  2. Astrophysics source code library. https://ascl.net/

  3. The GENE Code. http://genecode.org/

  4. SAMRAI structured adaptive mesh refinement application infrastructure. Lawrence Livermore National Laboratory, December 2007. https://computation.llnl.gov/casc/SAMRAI/

  5. Almgren, A.S., et al.: CASTRO: a new compressible astrophysical solver, I: hydrodynamics and self-gravity. Astrophys. J. 715, 1221–1238 (2010). https://doi.org/10.1088/0004-637X/715/2/1221

    Article  Google Scholar 

  6. Baiotti, L., et al.: Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole. Phys. Rev. D 71(2), 024035 (2005). https://doi.org/10.1103/PhysRevD.71.024035

    Article  Google Scholar 

  7. Benítez-Llambay, P., Masset, F.S.: FARGO3D: a new GPU-oriented MHD code. Astrophys. J. Suppl. Ser. 223, 11 (2016). https://doi.org/10.3847/0067-0049/223/1/11

    Article  Google Scholar 

  8. Blazewicz, M., et al.: From physics model to results: an optimizing framework for cross-architecture code generation. Sci. Program. 21(1–2), 1–16 (2013)

    Google Scholar 

  9. Bryan, G.L., et al.: ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. Ser. 211(2), 19 (2014). http://stacks.iop.org/0067-0049/211/i=2/a=19

    Article  MathSciNet  Google Scholar 

  10. Burrows, A., Fryxell, B.A.: A convective trigger for supernova explosions. APJ 418, L33 (1993). https://doi.org/10.1086/187109

    Article  Google Scholar 

  11. Colella, P., Woodward, P.R.: The Piecewise Parabolic Method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984). https://doi.org/10.1016/0021-9991(84)90143-8. http://www.sciencedirect.com/science/article/pii/0021999184901438

    Article  MATH  Google Scholar 

  12. Dubey, A., et al.: Evolution of FLASH, a multiphysics scientific simulation code for high performance computing. Int. J. High Perform. Comput. Appl. 28(2), 225–237 (2013). https://doi.org/10.1177/1094342013505656

    Article  Google Scholar 

  13. Dubey, A., et al.: Extensible component based architecture for FLASH, a massively parallel, multiphysics simulation code. Parallel Comput. 35, 512–522 (2009). https://doi.org/10.1016/j.parco.2009.08.001. http://www.sciencedirect.com/science/article/B6V12-4X54JHJ-1/2/b261a63ad1957b89222e859101236ca7

    Article  Google Scholar 

  14. Dubey, A., Turk, M., O’shea, B.: The impact of community software in astrophysics. In: Onate, E., Olivier, J., Huerta, A. (eds.) Proceedings of WCCM-XI;ECCM-V;ECFD-VI (2014)

    Google Scholar 

  15. Dubey, A., Tzeferacos, P., Lamb, D.: The dividends of investing in computational software design: a case study. Int. J. High Perform. Comput. Appl. (2018). https://doi.org/10.1177/1094342017747692

    Article  Google Scholar 

  16. Hopkins, P.F.: A new class of accurate, mesh-free hydrodynamic simulation methods. MNRAS 450, 53–110 (2015). https://doi.org/10.1093/mnras/stv195

    Article  Google Scholar 

  17. Jordan IV, G.C., et al.: Three-dimensional simulations of the deflagration phase of the gravitationally confined detonation model of type la supernovae. Astrophys. J. 681(2), 1448 (2008). http://stacks.iop.org/0004-637X/681/i=2/a=1448

    Article  Google Scholar 

  18. Janka, H.T., Müller, E.: The first second of a type II supernova: convection, accretion, and shock propagation. Astrophys. J. 448(2) (1995). https://doi.org/10.1086/309604

  19. Menon, H., et al.: Adaptive techniques for clustered N-body cosmological simulations. Comput. Astrophys. Cosmol. 2(1), 1–16 (2015). https://doi.org/10.1186/s40668-015-0007-9

    Article  Google Scholar 

  20. Mignone, A., et al.: PLUTO: a numerical code for computational astrophysics. Astrophys. J. Suppl. Ser. 170, 228–242 (2007). https://doi.org/10.1086/513316

    Article  Google Scholar 

  21. Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992). https://doi.org/10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  22. Morozova, V., et al.: Light curves of core-collapse supernovae with substantial mass loss using the new open-source SuperNova Explosion Code (SNEC). Astrophys. J. 814, 63 (2015). https://doi.org/10.1088/0004-637X/814/1/63

    Article  Google Scholar 

  23. Müller, B., Janka, H.T., Marek, A.: A new multi-dimensional general relativistic neutrino hydrodynamics code for core-collapse supernovae. II. Relativistic explosion models of core-collapse supernovae. Astrophys. J. 756, 84 (2012). https://doi.org/10.1088/0004-637X/756/1/84

    Article  Google Scholar 

  24. O’Connor, E.: An open-source neutrino radiation hydrodynamics code for core-collapse supernovae. Astrophys. J. Suppl. Ser. 219(2), 24 (2015). https://doi.org/10.1088/0067-0049/219/2/24

    Article  Google Scholar 

  25. Price, D.J., et al.: PHANTOM: a smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. Publ. Astron. Soc. Aust. 35, e031 (2018). https://doi.org/10.1017/pasa.2018.25

    Article  Google Scholar 

  26. Springel, V.: The cosmological simulation code GADGET-2. MNRAS 364, 1105–1134 (2005). https://doi.org/10.1111/j.1365-2966.2005.09655.x

    Article  Google Scholar 

  27. Stone, J.M., Norman, M.L.: ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - the hydrodynamic algorithms and tests. Astrophys. J. 80, 753–790 (1992). https://doi.org/10.1086/191680

    Article  Google Scholar 

  28. Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002). https://doi.org/10.1051/0004-6361:20011817

    Article  Google Scholar 

Download references

Acknowledgements

This material was based upon supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubey, A. (2020). A Study of Hydrodynamics Based Community Codes in Astrophysics. In: Juckeland, G., Chandrasekaran, S. (eds) Tools and Techniques for High Performance Computing. HUST SE-HER WIHPC 2019 2019 2019. Communications in Computer and Information Science, vol 1190. Springer, Cham. https://doi.org/10.1007/978-3-030-44728-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44728-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44727-4

  • Online ISBN: 978-3-030-44728-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics