Skip to main content

Physics-Informed Data-Driven Prediction of Turbulent Reacting Flows with Lyapunov Analysis and Sequential Data Assimilation

  • Chapter
  • First Online:
Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Abstract

High-fidelity simulations of turbulent reacting flows enable scientific understanding of the physics and engineering design of practical systems. Whereas Direct Numerical Simulation (DNS) is the most suitable numerical tool to understand the physics, under-resolved and large-eddy simulations offer a good compromise between accuracy and computational effort in the prediction of engineering flows. This compromise speeds up the computations but reduces the space-and-time accuracy of the prediction. The objective of this chapter is to (i) evaluate the predictability horizon of turbulent simulations with chaos theory, and (ii) enable the space-and-time-accurate prediction of rare and transient events using a Bayesian statistical learning approach based on data assimilation. The methods are applied to DNS of Moderate or Intense Low-oxygen Dilution (MILD) combustion. The predictability provides an estimate of the time horizon within which the occurrence of ignition kernels and deflagrative modes, which are considered here as rare and transient events, can be accurately predicted. The accurate detection of ignition kernels and their evolution towards deflagrative structures are well captured on a coarse (under-resolved) grid when data is assimilated from a costly refined DNS. Physically, such an accurate prediction is important to understand the stabilization mechanism of MILD combustion. These techniques enable the space-and-time-accurate prediction of rare and transient events in turbulent flows by combining under-resolved simulations and experimental data, for example, from engine sensors. This opens up new possibilities for on-the-fly calibration of reduced-order models for turbulent reacting flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Anderson, S.L. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127(12), 2741–2758 (2002)

    Article  Google Scholar 

  2. R. Bellman, Dynamic Programming (Dover Publications, New York, 2003)

    Google Scholar 

  3. R.W. Bilger, S.H. Starner, R.J. Kee, On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame 80, 135–149 (1990)

    Article  Google Scholar 

  4. P.J. Blonigan, P. Fernandez, S.M. Murman, Q. Wang, G. Rigas, L. Magri, Towards a chaotic adjoint for LES, Center for Turbulence Research, Summer Program (2016)

    Google Scholar 

  5. G. Boffetta, M. Cencini, M. Falcioni, A. Vulpiani, Predictability: a way to characterize complexity. Phys. Rep. 356, 367–474 (2002)

    Article  MathSciNet  Google Scholar 

  6. G. Burgers, P.J. van Leeuwen, G. Evensen, Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126(6), 1719–1724 (1998)

    Article  Google Scholar 

  7. R. S. Cant. SENGA2 User Guide (CUED-THERMO-2012/04, 2nd edn.). Technical report, University of Cambridge (2013)

    Google Scholar 

  8. A. Cavaliere, M. de Joannon, MILD combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)

    Google Scholar 

  9. A.F.C. da Silva, T. Colonius, Ensemble-based state estimator for aerodynamic flows. AIAA J. 56(7), 2568–2578 (2018)

    Google Scholar 

  10. D. Darakananda, A.F.D.C. da Silva, T. Colonius, J.D. Eldredge, Data-assimilated low-order vortex modeling of separated flows. Phys. Rev. Fluids 3(12), 1–24 (2018)

    Google Scholar 

  11. N.A.K. Doan, N. Swaminathan, Autoignition and flame propagation in non-premixed MILD combustion. Combust. Flame 201, 234–243 (2019)

    Article  Google Scholar 

  12. N.A.K. Doan, N. Swaminathan, Analysis of markers for combustion mode and heat release in MILD combustion using DNS data. Combust. Sci. Technol. 191(5–6), 1059–1078 (2019)

    Article  Google Scholar 

  13. N.A.K. Doan, N. Swaminathan, Y. Minamoto, DNS of MILD combustion with mixture fraction variations. Combust. Flame 189, 173–189 (2018)

    Article  Google Scholar 

  14. A. Doucet, N. Freitas, N. Gordon (eds.), Sequential Monte Carlo Methods in Practice (Springer, New York, 2001)

    MATH  Google Scholar 

  15. J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  MathSciNet  Google Scholar 

  16. V. Eswaran, S.B. Pope, Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31(3), 506–520 (1988)

    Article  Google Scholar 

  17. G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143 (1994)

    Article  Google Scholar 

  18. G. Evensen, Data Assimilation - The Ensemble Kalman Filter (Springer, Berlin, 2009)

    Google Scholar 

  19. J.D. Farmer, E. Ott, J.A. Yorke, The dimension of chaotic attractors. Phys. D 7(1–3), 153–180 (1983)

    Article  MathSciNet  Google Scholar 

  20. P. Fernandez, Q. Wang, Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization. J. Comput. Phys. 350, 453–469 (2017)

    Article  MathSciNet  Google Scholar 

  21. F. Ginelli, H. Chate, R. Livi, A. Politi, Covariant Lyapunov vectors. J. Phys. A: Math. Theor. 46(25), 254005 (2013)

    Article  MathSciNet  Google Scholar 

  22. I. Goldhirsch, P.-L. Sulem, S.A. Orszag, Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Phys. D: Nonlinear Phenom. 27(3), 311–337 (1987)

    Article  MathSciNet  Google Scholar 

  23. M. Hassanaly, V. Raman, Ensemble-LES analysis of perturbation response of turbulent partially-premixed flames. Proc. Combust. Inst. 37(2), 2249–2257 (2019)

    Article  Google Scholar 

  24. R.C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, Oxford, 1994)

    Google Scholar 

  25. F. Huhn, L. Magri, Stability, sensitivity and optimisation of chaotic acoustic oscillations. J. Fluid Mech. 882, A24 (2020)

    Google Scholar 

  26. F. Huhn, L. Magri, Optimisation of chaotically perturbed acoustic limit cycles. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05582-x

    Article  Google Scholar 

  27. R.E. Kalman, A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35 (1960)

    Article  MathSciNet  Google Scholar 

  28. J.W. Labahn, H. Wu, B. Coriton, J.H. Frank, M. Ihme, Data assimilation using high-speed measurements and LES to examine local extinction events in turbulent flames. Proc. Combust. Inst. 37(2), 2259–2266 (2019)

    Article  Google Scholar 

  29. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  30. Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161(11), 2801–2814 (2014)

    Article  Google Scholar 

  31. P. Mohan, N. Fitzsimmons, R.D. Moser, Scaling of Lyapunov exponents in homogeneous isotropic turbulence. Phys. Rev. Fluids 2, 114606 (2017)

    Article  Google Scholar 

  32. G. Nastac, J. Labahn, L. Magri, M. Ihme, Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations. Phys. Rev. Fluids 2(9), 094606 (2017)

    Article  Google Scholar 

  33. A. Ni, Q. Wang, Sensitivity analysis on chaotic dynamical systems by non-intrusive least squares shadowing (NILSS). J. Comput. Phys. 347, 56–77 (2017)

    Article  MathSciNet  Google Scholar 

  34. V.I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)

    MATH  Google Scholar 

  35. I.B. Özdemir, N. Peters, Characteristics of the reaction zone in a combustor operating at MILD combustion. Exp. Fluids 30, 683–695 (2001)

    Article  Google Scholar 

  36. T. Poinsot, Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  Google Scholar 

  37. S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6 (2004)

    Article  Google Scholar 

  38. D. Ruelle, Ergodic theory of differentiable dynamical systems. Publications mathematiques de l’IHES 50(1), 27–58 (1979)

    Article  MathSciNet  Google Scholar 

  39. P.J. van Leeuwen, Comment on “Data assimilation using an ensemble Kalman filter technique”. Mon. Weather Rev. 127(6), 1374–1377 (2002)

    Article  Google Scholar 

  40. J.S. Whitaker, T.M. Hamill, Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130(7), 1913–1924 (2002)

    Article  Google Scholar 

  41. J.S. Whitaker, T.M. Hamill, Evaluating methods to account for system errors in ensemble data assimilation. Mon. Weather Rev. 140(9), 3078–3089 (2012)

    Article  Google Scholar 

  42. H. Yu, T. Jaravel, M. Juniper, M. Ihme, L. Magri, Data assimilation and optimal calibration in nonlinear models of flame dynamics. J. Eng. Gas Turb. Power 141(2), 121010 (2019)

    Google Scholar 

  43. H. Yu, M.P. Juniper, L. Magri, Combined state and parameter estimation in level-set methods. J. Comput. Phys. 399, 108950 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Technical University of Munich - Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement no. 291763. L. Magri also acknowledges the Royal Academy of Engineering Research Fellowships Scheme. This work was performed using resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service (www.csd3.cam.ac.uk), provided by Dell EMC and Intel using Tier-2 funding from the Engineering and Physical Sciences Research Council (capital grant EP/P020259/1), and DiRAC funding from the Science and Technology Facilities Council (www.dirac.ac.uk). The authors acknowledge Prof. Cant for providing the code SENGA2. Francisco Huhn and Hans Yu are gratefully acknowledged for their invaluable inputs on Lyapunov analysis (Sect. 9.2) and data assimilation (Sect. 9.3), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Magri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magri, L., Doan, N.A.K. (2020). Physics-Informed Data-Driven Prediction of Turbulent Reacting Flows with Lyapunov Analysis and Sequential Data Assimilation. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_9

Download citation

Publish with us

Policies and ethics