Skip to main content

Machine Learning of Combustion LES Models from Reacting Direct Numerical Simulation

  • Chapter
  • First Online:
Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Abstract

In this chapter we demonstrate how supervised deep learning techniques can be used to construct models for the filtered progress variable source term necessary for large eddy simulation (LES). The source data for the model is a direct numerical simulation (DNS) of a reacting flow in a low swirl burner configuration. Filtered quantities taken from the DNS data are used to train a deep neural network (DNN)-based model. An efficient data sampling strategy was devised to ensure that a uniform representation of all the states observed in the filtered DNS data are equally present in the training dataset. A-priori testing of the DNN-based model highlights the representative power of DNN to accurately reproduce the filtered reaction progress variable source term over a range of scales and various flame regimes as seen in an industrial burner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.A. McMurtry, W.H. Jou, J. Riley, R. Metcalfe, AIAA J. 24(6), 962 (1986)

    Google Scholar 

  2. T. Poinsot, S. Candel, A. Trouvé, Prog. Energy Combust. Sci. 21(6), 531 (1995)

    Google Scholar 

  3. L. Vervisch, T. Poinsot, Annu. Rev. Fluid Mech. 30(1), 655 (1998)

    Article  MathSciNet  Google Scholar 

  4. E.R. Hawkes, R. Sankaran, J.C. Sutherland, J.H. Chen, J. Phys.: Conf. Ser. 16, 65 (IOP Publishing, 2005)

    Google Scholar 

  5. J.H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki et al., Comput. Sci. Discov. 2(1), 015001 (2009)

    Google Scholar 

  6. K. Aditya, A. Gruber, C. Xu, T. Lu, A. Krisman, M.R. Bothien, J.H. Chen, Proc. Combust. Inst. 37(2), 2635 (2019)

    Google Scholar 

  7. D. Dalakoti, E.R. Hawkes, M.S. Day, J.B. Bell, Direct numerical simulation of two-stage combustion and flame stabilisation in diesel engine-relevant conditions. in International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) (Boston USA. 2017), pp. 5835-5843

    Google Scholar 

  8. M. Rieth, M. Day, J. Chen, Bull. Am. Phys. Soc. 63 (2018)

    Google Scholar 

  9. J.C. Sutherland, A. Parente, Proc. Combust. Inst. 32(1), 1563 (2009)

    Google Scholar 

  10. C.J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, T. Poinsot, Combust. Flame 203, 255 (2019)

    Google Scholar 

  11. K. Duraisamy, G. Iaccarino, H. Xiao, Annu. Rev. Fluid Mech. 51, 357 (2019)

    Article  MathSciNet  Google Scholar 

  12. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014). https://doi.org/10.1017/CBO9781139058452, http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

  13. H.C. Burger, C.J. Schuler, S. Harmeling, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012), pp. 2392–2399. https://doi.org/10.1109/CVPR.2012.6247952

  14. A. Dosovitskiy, J.T. Springenberg, T. Brox, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07–12 June 2015, pp. 1538–1546. https://doi.org/10.1109/CVPR.2015.7298761

  15. S. Lefkimmiatis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 5882–5891. https://doi.org/10.1109/CVPR.2017.623, arXiv:1611.06757

  16. C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, W. Shi, Conf. Comput. Vis. Pattern Recognit. (2016), pp. 1–14. https://doi.org/10.1109/CVPR.2017.19, arXiv:1609.04802

  17. Y. Tai, J. Yang, X. Liu, in Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017 (2017), pp. 2790–2798. https://doi.org/10.1109/CVPR.2017.298

  18. W.S. Lai, J.B. Huang, N. Ahuja, M.H. Yang, in Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017 (2017), pp. 5835–5843. https://doi.org/10.1109/CVPR.2017.618

  19. A. Graves (2013). https://doi.org/10.1145/2661829.2661935, arXiv:1308.0850

  20. Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, J. Dean (2016). https://doi.org/10.1038/nrn2258

    Article  Google Scholar 

  21. W. Kwon (2017), arXiv:1706.03762 [cs]

  22. D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, D. Hassabis, Nature 550(7676), 354 (2017). https://doi.org/10.1038/nature24270

    Article  Google Scholar 

  23. Y. Lecun, Y. Bengio, G. Hinton, Nature 521(7553), 436 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  24. J. Schmidhuber, Neural Netw. 61, 85 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  Google Scholar 

  25. A. Prieto, B. Prieto, E.M. Ortigosa, E. Ros, F. Pelayo, J. Ortega, I. Rojas, Neurocomputing (2016). https://doi.org/10.1016/j.neucom.2016.06.014

    Article  Google Scholar 

  26. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016), http://www.deeplearningbook.org

  27. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, Neurocomputing (2017). https://doi.org/10.1016/j.neucom.2016.12.038

    Article  Google Scholar 

  28. G. Cybenko, Math. Control Signals Syst. 2(4), 303 (1989). https://doi.org/10.1007/BF02551274

    Article  MathSciNet  Google Scholar 

  29. K. Hornik, Neural Netw. 4(2), 251 (1991). https://doi.org/10.1016/0893-6080(91)90009-T

    Article  MathSciNet  Google Scholar 

  30. M. Day, S. Tachibana, J. Bell, M. Lijewski, V. Beckner, R.K. Cheng, Combust. Flame 159(1), 275 (2012). https://doi.org/10.1016/j.combustflame.2011.06.016, http://linkinghub.elsevier.com/retrieve/pii/S0010218011001969

    Article  Google Scholar 

  31. R. Cheng, D. Yegian, M. Miyasato, G. Samuelsen, C. Benson, R. Pellizzari, P. Loftus, Proc. Combust. Inst. (2000). https://doi.org/10.1016/S0082-0784(00)80344-6

    Article  Google Scholar 

  32. M.S. Day, J.B. Bell, Combust. Theory Model. 4(4), 535 (2000). https://doi.org/10.1088/1364-7830/4/4/309

    Article  Google Scholar 

  33. A. Kazakov, M. Frenklach, Reduced reaction sets based on GRI-Mech 1.2 (1994), http://www.me.berkeley.edu/drm/

  34. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011)

    Google Scholar 

  35. J. MacQueen et al., in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1 (1967), pp. 281–297

    Google Scholar 

  36. M. Inaba, N. Katoh, H. Imai, in Proceedings of the 10th Annual Symposium on Computational Geometry (ACM, 1994), pp. 332–339

    Google Scholar 

  37. D. Sculley, in Proceedings of the 19th International Conference on World Wide Web (ACM, 2010), pp. 1177–1178

    Google Scholar 

  38. Y. LeCun, Y. Bengio, G. Hinton, Nature 521(7553), 436 (2015)

    Google Scholar 

  39. J. Schmidhuber, Neural Netw. 61, 85 (2015)

    Google Scholar 

  40. Y. Bengio et al., Found. Trends Mach. Learn. 2(1), 1 (2009)

    Google Scholar 

  41. S. Ioffe, C. Szegedy (2015), arXiv:1502.03167

  42. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer., Automatic differentiation in pytorch (2017)

    Google Scholar 

  43. J. Van Oijen, A. Donini, R. Bastiaans, J. ten Thije Boonkkamp, L. De Goey, Prog. Energy Combust. Sci. 57, 30 (2016)

    Google Scholar 

  44. D. Veynante, L. Vervisch, Prog. Energy Combust. Sci. 28(3), 193 (2002)

    Google Scholar 

  45. B. Savard, G. Blanquart, Combust. Flame 180, 77 (2017)

    Google Scholar 

  46. K. Pearson, Proc. R. Soc. Lond. 58(347–352), 240 (1895)

    Google Scholar 

  47. A. Moreau, O. Teytaud, J.P. Bertoglio, Phys. Fluids 18(10), 105101 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding was provided by U.S. Department of Energy Office of Science and National Nuclear Security Administration. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Yellapantula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yellapantula, S., de Frahan, M.T.H., King, R., Day, M., Grout, R. (2020). Machine Learning of Combustion LES Models from Reacting Direct Numerical Simulation. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_14

Download citation

Publish with us

Policies and ethics