Skip to main content

Analysis of Flame Topology and Burning Rates

  • Chapter
  • First Online:
  • 1146 Accesses

Abstract

Datasets generated using Direct Numerical Simulation (DNS) are used to investigate the influence of local flame surface topology on global flame propagation. A mathematical framework based on Morse theory is presented and is shown to lead to a classification of all possible types of flame surface topology. A similar mathematical approach is shown to provide insight into the behaviour of the surface density function (SDF) and the displacement speed in the vicinity of flame pinch-off and pocket burnout events. DNS data for a pair of colliding premixed turbulent hydrogen–air flames is used to identify and locate topological points of interest and to determine their frequencies of occurrence on the flame surface. Further analysis of the dataset is carried out to evaluate terms of the SDF balance equation and the displacement speed in the presence of flame–flame interactions. Considerable insight is gained into the underlying mechanisms of flame propagation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Wang, E.R. Hawkes, J.H. Chen, B. Zhou, Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame - an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511–536 (2017)

    Article  Google Scholar 

  2. A.Y. Poludnenko, E.S. Oran, The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157, 995–1011 (2010)

    Article  Google Scholar 

  3. K.N.C. Bray, J.B. Moss, A unified statistical model of the premixed turbulent flame. Acta Astron. 4, 291–320 (1977)

    Article  Google Scholar 

  4. N. Peters, Turbulent Combustion (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  5. T.M. Wabel, A.W. Skiba, J.E. Temme, J.F. Driscoll, Measurements to determine the regimes of premixed flames in extreme turbulence. Proc. Combust. Inst. 36, 1809–1816 (2017)

    Article  Google Scholar 

  6. S.S. Girimaji, S.B. Pope, Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234, 247–277 (1992)

    Article  Google Scholar 

  7. N. Chakraborty, R.S. Cant, Statistical behavior and modeling of the flame normal vector in premixed turbulent flames. Num. Heat Trans, Part I: Appl. 50, 623–643 (2006)

    Google Scholar 

  8. W.T. Ashurst, Geometry of premixed flames in three–dimensional turbulence, in Proceedings of the 1990 Summer Program. Center for Turbulence Research, Stanford University & NASA Ames (1990), pp. 245–253

    Google Scholar 

  9. A.Y. Poludnenko, E.S. Oran, The interaction of high-speed turbulence with flames: turbulent flame speed. Combust. Flame 158, 301–326 (2011)

    Article  Google Scholar 

  10. M. Yoda, L. Hesselink, M.G. Mungal, Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-Schmidt-number jet. J. Fluid Mech. 279, 313–350 (1994)

    Article  Google Scholar 

  11. L. Wang, N. Peters, The length-scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457–475 (2006)

    Article  Google Scholar 

  12. Y. Shim, S. Tanaka, M. Tanahashi, T. Miyauchi, Local structure and fractal characteristics of H\(_2\)-air turbulent premixed flame. Proc. Combust. Inst. 33, 1455–1462 (2011)

    Article  Google Scholar 

  13. Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161, 2801–2814 (2014)

    Article  Google Scholar 

  14. H. Minkowski, Volumen und Overfläche. Math. Ann. 57, 447–495 (1903)

    Article  MathSciNet  Google Scholar 

  15. W. Kollmann, J.H. Chen, Pocket formation and the flame surface density equation. Proc. Combust. Inst. 27, 927–934 (1998)

    Article  Google Scholar 

  16. J.H. Chen, T. Echekki, W. Kollmann, The mechanism of two-dimensional pocket formation in lean premixed methane-air flames with implications to turbulent combustion. Combust. Flame. 116, 15–48 (1999)

    Article  Google Scholar 

  17. S. Trivedi, R.A.C. Griffiths, H. Kolla, J.H. Chen, R.S. Cant, Topology of pocket formation in turbulent premixed flames. Proc. Combust. Inst. 37, 2619–2626 (2019)

    Article  Google Scholar 

  18. R.A.C. Griffiths, J.H. Chen, H. Kolla, R.S. Cant, W. Kollmann, Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35, 1341–1348 (2015)

    Article  Google Scholar 

  19. S. Trivedi, G.V. Nivarti, R.S. Cant, Flame self-interactions with increasing turbulence intensity. Proc. Combust. Inst. 37, 2443–2449 (2019)

    Article  Google Scholar 

  20. J. Milnor, Morse Theory (Princeton University Press, Princeton, 1963)

    Book  Google Scholar 

  21. L. Vervisch, E. Bidaux, K.N.C. Bray, W. Kollmann, Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys. Fluids 7, 2496–2503 (1995)

    Article  Google Scholar 

  22. R.S. Cant, S.B. Pope, K.N.C. Bray, Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)

    Article  Google Scholar 

  23. E.R. Hawkes, R.S. Cant, A flame surface density approach to Large-Eddy Simulation of premixed turbulent combustion. Proc. Combust. Inst. 28, 51–58 (2000)

    Article  Google Scholar 

  24. M. Boger, D. Veynante, H. Boughanem, A. Trouvé, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)

    Article  Google Scholar 

  25. E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein, J.H. Chen, A petascale direct numerical simulation study of the modelling of flame wrinkling for large eddy simulations in intense turbulence. Combust. Flame 159, 2690–2703 (2012)

    Article  Google Scholar 

  26. J. Li, Z. Zhao, A. Kazarov, F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet. 36, 566–575 (2004)

    Article  Google Scholar 

  27. J.H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E.R. Hawkes, S. Klasky, W.K. Liao, K.L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, C.S. Yoo, Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discov. 2, 015001 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stewart Cant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trivedi, S., Nivarti, G.V., Cant, R.S. (2020). Analysis of Flame Topology and Burning Rates. In: Pitsch, H., Attili, A. (eds) Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer, Cham. https://doi.org/10.1007/978-3-030-44718-2_1

Download citation

Publish with us

Policies and ethics