Skip to main content

Wavelet Transform Selection Method for Biological Signal Treatment

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2019)

Abstract

This paper presents the development and evaluation of an algorithm for compressing fetal electrocardiographic signals, taken superficially on the mother’s abdomen. This method for acquiring ECG signals produces a great volumen of information that makes it difficult for the records to be stored and transmitted. The proposed algorithm aims for lossless compression of the signal by applying Wavelet Packet Transform to keep errors below the unit, with compression rates over 20:1 and with conserved energy in reconstruction as comparison parameter. For algorithm validation, the signal files provided by PhysioBank DataBase are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calabria, S.J.C., et al.: Software applications to health sector: a systematic review of literature. J. Eng. Appl. Sci. 13, 3922–3926 (2018). https://doi.org/10.36478/jeasci.2018.3922.3926

    Article  Google Scholar 

  2. ZhiLin, Z., Tzyy-Ping, J.: Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learing. IEEE Trans. Biomed. Eng. 60(2), 300–309 (2013). https://doi.org/10.1109/TBME.2012.2226175

    Article  Google Scholar 

  3. Panifraphy, D., Rakshit, M., An efficient method for fetal ECG extraction from single channel abdominal ECG. In: IEEE International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, pp. 1083–1088 (2015)

    Google Scholar 

  4. Arvinti, B., Costache, M.: The performance of the Daubechies mother wavelets on ECG Compression. In: 11th International Symposium on Electronics and Telecommunications (ISETC), Timisoara, Romania, pp. 1–4 (2014)

    Google Scholar 

  5. Brechet, L.: Compression of biomedical signals with mother wavelet optimization and best-biasis wavelet packet selection. IEEE Trans. Biomed. Eng. 54(12), 2186–2192 (2007)

    Article  Google Scholar 

  6. Castillo, E., Morales, D.P.: Efficient wavelet-based ECG processing for single-lead FHR extraction. Digit. Signal Process. 23(6), 1897–1909 (2013)

    Article  MathSciNet  Google Scholar 

  7. Rivas, E., Burgos, J.C.: Condition assessment of power OLTC by vibration analysis using wavelet transformd. IEEE Trans. Power Delivery 24(2), 687–694 (2009). https://doi.org/10.1109/TPWRD.2009.2014268

    Article  Google Scholar 

  8. Bueno, M.C.: Electrocardiografía clínica deductiva, vol. 19. Universidad de Salamanca (2012)

    Google Scholar 

  9. Johnson, B., Bennett, A., Myungjae, K., Choi, A.: Automated evaluation of fetal cardiotocograms using neural network. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, South Korea, pp. 408–413 (2012)

    Google Scholar 

  10. Ayres-de-Campos, D., Spong, C.Y., Chandraharan, E.: FIGO consensus guidelines on intrapartum fetal monitoring: cardiotocography. Int. J. Gynecol. Obstet. 131, 13–24 (2015)

    Article  Google Scholar 

  11. Kuzilek, J., Lhotska, L., Hanuliak, M.: Processing Holter ECG signal corrupted with noise: using ICA for QRS complex detection. In: 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Rome, Italy, pp. 1–4 (2010)

    Google Scholar 

  12. Chen, Y., Cheng, C.: Reconstruction of sparse multiband wavelet signals from fourier measurements. In: International Conference on Sampling Theory and Applications (SampTA), Washington D.C., USA, pp. 78–81 (2015)

    Google Scholar 

  13. Rao, Y., Zeng, H.: Estimate MECG from abdominal ECG signals using extended Kalman RTS smoother. In: Sixth International Conference on Intelligent Control and Information Processing (ICICIP), Wuhan, China, pp. 73–77 (2015)

    Google Scholar 

  14. Yao, Z., Dong, Y.: Experimental evaluations of sequential adaptive processing for fetal electrocardiograms (ECGs). In: 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, pp. 770-774 (2015)

    Google Scholar 

  15. Lima-Herrera, S.L., Alvarado-Serrano, C.: Fetal ECG extraction based on adaptive filters and wavelet transform: validation and application in fetal heart rate variability analysis. In: 13th International Conference on Electrical Engineering. Computing Science and Automatic Control (CCE), Ciudad de México, México, pp. 1–6 (2016)

    Google Scholar 

  16. Ebrahimzadeh, A., Azarbad, M.: ECG compression using wavelet transform and three-level quantization. In: 6th International Conference on Digital Content, Multimedia Technology and Its Applications (IDC), Seoul, South Korea, pp. 254-256 (2010)

    Google Scholar 

  17. Gerla, V., Paul, K.: Multivariate analysis of full-term neonatal polysomnographic data. IEEE Trans. Inf. Technol. Biomed. 13(1), 104–110 (2009). https://doi.org/10.1109/TITB.2008.2007193

    Article  Google Scholar 

  18. Chae, D.H., Alem, F.: Performance study of compressive sampling for ECG signal compression in noisy and varying sparsity acquisition, pp. 1306–1309. IEEE (2013). https://doi.org/10.1109/ICASSP.2013.6637862

  19. Zhang, Y., Liu, B., Ji, X., Huang, D.: Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Process. Lett. 45, 365–378 (2016). https://doi.org/10.1007/s11063-016-9530-1

    Article  Google Scholar 

  20. Jarisch, W., Detwiler, J.S.: Statistical modeling of fetal heart rate variability. IEEE Trans. Biomed. Eng. (BME) 27(10), 582–589 (1980). https://doi.org/10.1109/TBME.1980.326580

    Article  Google Scholar 

  21. Mukhopadhyay, S.K., Mitra, M.: ECG signal processing: lossless compression, transmission via GSM network and feature extraction using Hilbert transform. In: Point-of-Care Healthcare Technologies (PHT), Bangalore, India, pp. 85–88 (2013)

    Google Scholar 

  22. Jin, W., Xiaomei, L.: ECG data compression research based on wavelet neural network. In: Computer, Mechatronics, Control and Electronic Engineering (CMCE), Changchun, China, pp. 361–363 (2010)

    Google Scholar 

  23. Arvinti, B., Isar, A.: An adaptive compression algorithm for ECG signals. In: IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, pp. 91–95 (2011)

    Google Scholar 

  24. Hongteng, X., Guangtao, Z.: ECG data compression based on wave atom transform. In: IEEE 13th International Workshop on Multimedia Signal Processing (MMSP), Boston, MA, USA, pp. 1–5 (2011)

    Google Scholar 

  25. Hernando-Ramiro, C., Blanco-Velasco, M.: Efficient thresholding-based ECG compressors for high quality applications using cosine modulated filter banks. In: Engineering in Medicine and Biology Society (EMBC), pp. 7079–7082 (2011)

    Google Scholar 

  26. Seong-Beom, C., Young-Dong, L.: Implementation of novel ECG compression algorithm using template matching. In: 7th International Conference on Computing and Convergence Technology (ICCCT), Seoul, South Korea, pp. 305–308 (2012)

    Google Scholar 

  27. Li, Z., Deng, Y.: ECG signal compressed sensing using the wavelet tree model. In: 8th International Conference on Biomedical Engineering and Informatics (BMEI), Shenyang, China, pp. 194–199 (2015)

    Google Scholar 

  28. Jha, C.K., Kolekar, M.H.: Efficient ECG data compression and transmission algorithm for telemedicine. In: 8th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, pp. 1–6 (2016). https://doi.org/10.1109/COMSNETS.2016.7439988

  29. Motinath, V.A., Jha, C.K.: A novel ECG data compression algorithm using best mother wavelet selection. In: International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, pp. 682–686 (2016)

    Google Scholar 

  30. Wang, X., Chen, Z.: ECG compression based on combining of EMD and wavelet transform. Electron. Lett. 52(1), 1588–1590 (2016). https://doi.org/10.1049/el.2016.2174

    Article  Google Scholar 

  31. Santamaría, F., Cortés, C.A., et al.: Uso de la Transformada de Ondeletas (Wavelet Transform) en la Reducción de Ruidos en las Señales de Campo Eléctrico producidas por Rayos. Información Tecnológica 23, 65–78 (2012)

    Article  Google Scholar 

  32. Craven, D., McGinley, B.: Energy-Efficient Compressed Sensing for Ambulatory ECG Monitoring, vol. 71, pp. 1–13. Elsevier, Amsterdam (2016). https://doi.org/10.1016/j.compbiomed.2016.01.013

    Book  Google Scholar 

  33. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000)

    Article  Google Scholar 

  34. Singh, O., Sunkaria, R.K.: The utility of wavelet packet transform in QRS complex detection - a comparative study of different mother wavelets. In: 2nd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1242–1247 (2015)

    Google Scholar 

  35. Lee, S., Kim, J.: A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Trans. Biomed. Eng. 58(9), 2448–2455 (2011). https://doi.org/10.1109/TBME.2011.2156794

    Article  Google Scholar 

  36. Ma, J., Zhang, T.: A novel ECG data compression method using adaptive fourier decomposition with security guarantee in e-health applications. IEEE J. Biomed. Health Inf. 19(3), 986–994 (2015). https://doi.org/10.1109/JBHI.2014.2357841

    Article  Google Scholar 

  37. Zhao, C., Chen, Z.: Electrocardiograph compression based on sifting process of empirical mode decomposition. Electron. Lett 52(3)(9), 688–690 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Jiménez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiménez, G., Collazos Morales, C.A., De-la-Hoz-Franco, E., Ariza-Colpas, P., González, R.E.R., Maldonado-Franco, A. (2020). Wavelet Transform Selection Method for Biological Signal Treatment. In: Tiwary, U., Chaudhury, S. (eds) Intelligent Human Computer Interaction. IHCI 2019. Lecture Notes in Computer Science(), vol 11886. Springer, Cham. https://doi.org/10.1007/978-3-030-44689-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44689-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44688-8

  • Online ISBN: 978-3-030-44689-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics