Skip to main content

A Structural Model to Systematically Understand Nasal Framework: The Rhinoplasty Compass

  • 294 Accesses

Abstract

This chapter discusses using a prism-shaped model how the key structure in external nasal anatomy and the nasal airway is the nasal framework. The nasal framework consists of the anterior and inferior septum and the nasal bones superiorly. Superficially located to the framework is the canopy layer consisting of the paired alar cartilages and the skin and soft-tissue layer. Supporting the framework is the foundation layer, or substrate, consisting of the septal bones and pyriform aperture. Using the prism model, this key chapter analyzes the variations of framework external extrusion, from supero-inferior excess and deficiency (SI+/−) to antero-posterior excess and deficiency (AP+/−), and how combinations of these variations can be visualized on a compass-like structure, we call the Rhinoplasty Compass. By categorizing patients on this compass, predictable esthetic, deviation, and functional phenotypes can be better understood.

Keywords

  • Rhinoplasty triangular prism model
  • Nasal foundation
  • Nasal framework
  • Nasal canopy
  • Septal excess
  • Septal deficiency
  • Rhinoplasty compass

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-44674-1_5
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-44674-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9
Fig. 5.10
Fig. 5.11
Fig. 5.12
Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21
Fig. 5.22
Fig. 5.23
Fig. 5.24
Fig. 5.25
Fig. 5.26
Fig. 5.27
Fig. 5.28
Fig. 5.29
Fig. 5.30
Fig. 5.31
Fig. 5.32
Fig. 5.33
Fig. 5.34
Fig. 5.35
Fig. 5.36
Fig. 5.37
Fig. 5.38
Fig. 5.39
Fig. 5.40
Fig. 5.41
Fig. 5.42
Fig. 5.43
Fig. 5.44
Fig. 5.45

Notes

  1. 1.

    As we will discuss later, the release of the lateral crura of the alar cartilages from its attachment to the framework at the septum and upper lateral fusion via the inter-cartilaginous incision itself can release the inferior directed tip cartilages in a cephalic direction, but this does not require any trim, thus observers of the rotation mistakenly ascribed the removal of alar cartilages to being the source of rotation.

References

  1. Kandathil CK, Saltychev M, Moubayed SP, Most SP. Association of dorsal reduction and tip rotation with social perception. JAMA Facial Plast Surg. 2018;20(5):362–6.

    CrossRef  Google Scholar 

  2. Johnson CM Jr, Godin MS. The tension nose: open structure rhinoplasty approach. Plast Reconstr Surg. 1995;95:43–51.

    CrossRef  Google Scholar 

  3. Lee MR, Geissler P, Cochran S, Gunter JP, Rohrich RJ. Decreasing nasal tip projection in rhinoplasty. Plast Reconstr Surg. 2014;134:41e–9e.

    CAS  CrossRef  Google Scholar 

  4. Behrbohm H, Tardy E. Essentials of Septorhinoplasty. 2nd ed. Stuttgart, New York: Thieme; 2017.

    Google Scholar 

  5. Stupak HD, Weinstock M. Bony/cartilaginous mismatch: a radiologic investigation into the etiology of tension nose deformity. Plast Reconstr Surg. 2018;141(2):312–21.

    PubMed  Google Scholar 

  6. Pernia NE. The dimensions of the nasal septal cartilage: a preliminary study in adult Filipino Malay cadavers. Philipp J Otolaryngol Head Neck Surg. 2011;26:10–2.

    CrossRef  Google Scholar 

  7. Miles BA, Petrisor D, Kao H, Finn RA, Throckmorton GS. Anatomical variation of the nasal septum: analysis of 57 cadaver specimens. Otolaryngol Head Neck Surg. 2007;136:362–8.

    CrossRef  Google Scholar 

  8. Massie JP, Runyan CM, Stern MJ, et al. Nasal septal anatomy in skeletally mature patients with cleft lip and palate. JAMA Facial Plast Surg. 2016;18:347–53.

    CrossRef  Google Scholar 

  9. Dalili Kajan Z, Khademi J, Nemati S, Niksolat E. The effects of septal deviation, concha bullosa, and their combination on the depth of posterior palatal arch in cone-beam computed tomography. J Dent (Shiraz). 2016;17:26–31.

    Google Scholar 

  10. Hartman CH. Nasal Septal Deviation and Craniofacial Asymmetries (master of science thesis). Iowa City, Iowa: University of Iowa; 2015. p. 8.

    Google Scholar 

  11. Mladina R, Krajina Z. The influence of palato-cranial base (basomaxillary) angle on the length of the caudal process of the nasal septum in man. Rhinology. 1990;28:185–9.

    CAS  PubMed  Google Scholar 

  12. Hyman AJ, Fastenberg JH, Stupak HD. Orientation of the premaxilla in the origin of septal deviation. Eur Arch Otorhinolaryngol. 2019;276(11):3147–51.

    CrossRef  Google Scholar 

  13. Stupak HD, Park SY. Gravitational forces, negative pressure and facial structure in the genesis of airway dysfunction during sleep: a review of the paradigm. Sleep Med. 2018;51:125–32.

    CrossRef  Google Scholar 

  14. Hur MS, Won HS, Kwak DS, Chung IH, Kim IB. Morphological patterns and variations of the nasal septum components and their clinical implications. J Craniofac Surg. 2016;27:2164–7.

    CrossRef  Google Scholar 

  15. Mays S. Nasal septal deviation in a mediaeval population. Am J Phys Anthropol. 2012;148:319–26.

    CrossRef  Google Scholar 

  16. Trevizan M, Consolaro A. Premaxilla: an independent bone that can base therapeutics for middle third growth! Dental Press J Orthod. 2017;22(2):21–6.

    CrossRef  Google Scholar 

  17. Stupak HD. The human external nose and its evolutionary role in the prevention of obstructive sleep apnea. Otolaryngol Head Neck Surg. 2010;142(6):779–82.

    CrossRef  Google Scholar 

  18. Bhatia DDS, Palesy T, Ramli R, Barham HP, Christensen JM, Gunaratne DA, et al. Two-dimensional assessment of the nasal valve area cannot predict minimum cross-sectional area or airflow resistance. Am J Rhinol Allergy. 2016;30(3):190–4.

    CrossRef  Google Scholar 

  19. Shuaib SW, Undavia S, Lin J, Johnson CM Jr, Stupak HD. Can functional septorhinoplasty independently treat obstructive sleep apnea? Plast Reconstr Surg. 2015;135(6):1554–65.

    CAS  CrossRef  Google Scholar 

  20. Tripathi PB, Elghobashi S, Wong BJF. The myth of the internal nasal valve. JAMA Facial Plast Surg. 2017;19(4):253–4.

    CrossRef  Google Scholar 

  21. Naughton JP, Lee AY, Ramos E, Wootton D, Stupak HD. Effect of nasal valve shape on downstream volume, airflow, and pressure drop: importance of the nasal valve revisited. Ann Otol Rhinol Laryngol. 2018;127(11):745–53.

    CrossRef  Google Scholar 

  22. Surowieki J. The wisdom of crowds: why the many are smarter than the few and how collective wisdom shapes business, economies, societies and nations. Doubleday 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Stupak, H.D. (2020). A Structural Model to Systematically Understand Nasal Framework: The Rhinoplasty Compass. In: Rethinking Rhinoplasty and Facial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-44674-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44674-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44673-4

  • Online ISBN: 978-3-030-44674-1

  • eBook Packages: MedicineMedicine (R0)