Skip to main content

Nasal Function and Sleep Disorders

  • 284 Accesses

Abstract

The function and structure of the nose and genesis of obstructive sleep apnea (OSA) are inter-connected, but not necessarily in the expected fashion. Obstructions during sleep are in essence, a slackening in the tone of the jaws, causing release of the tongue and palate into the airway. Nasal obstruction is not required to cause this state, but it can be an exacerbating factor. Clinical and modeling data are presented to support this concept. The aerodynamics of how the nose affects the airway are also discussed at length, including a consideration of gravitational forces, negative pressure, and the consideration of the tongue and palate as airfoils subjected to airflow forces.

Keywords

  • Obstructive sleep apnea (OSA)
  • Sleep disordered breathing
  • Nasal obstruction
  • Nasal aerodynamics
  • Mouth-breathing
  • Negative pressure
  • Airfoil

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-44674-1_3
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-44674-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8

References

  1. Huang TW, Young TH. Novel porous oral patches for patients with mild obstructive sleep apnea and mouth breathing: a pilot study. Otolaryngol Head Neck Surg. 2015;152(2):369–73.

    CrossRef  Google Scholar 

  2. Lee SH, Choi JH, Shin C, Lee HM, Kwon SY, Lee SH. How does open-mouth breathing influence upper airway anatomy? Laryngoscope. 2007;117(6):1102–6.

    CrossRef  Google Scholar 

  3. Meurice JC, Marc I, Carrier G, Sériès F. Effects of mouth opening on upper airway collapsibility in normal sleeping subjects. Am J Respir Crit Care Med. 1996;153(1):255–9.

    CAS  CrossRef  Google Scholar 

  4. de Oliveira PW, Gregorio LL, Silva RS, Bittencourt LR, Tufik S, Gregório LC. Orofacial-cervical alterations in individuals with upper airway resistance syndrome. Braz J Otorhinolaryngol. 2016;82(4):377–84.

    CrossRef  Google Scholar 

  5. Friedman M, Tanyeri H, Lim JW, Landsberg R, Vaidyanathan K, Caldarelli D. Effect of improved nasal breathing on obstructive sleep apnea. Otolaryngol Head Neck Surg. 2000;122(1):71–4.

    CAS  CrossRef  Google Scholar 

  6. Koutsourelakis I, Georgoulopoulos G, Perraki E, Vagiakis E, Roussos C, Zakynthinos SG. Randomised trial of nasal surgery for fixed nasal obstruction in obstructive sleep apnoea. Eur Respir J. 2008;31(1):110–7.

    CAS  CrossRef  Google Scholar 

  7. Rosow DE, Stewart MG. Is nasal surgery an effective treatment for obstructive sleep apnea? Laryngoscope. 2010;120(8):1496–7.

    CrossRef  Google Scholar 

  8. Ishii L, Roxbury C, Godoy A, Ishman S, Ishii M. Does nasal surgery improve OSA in patients with nasal obstruction and OSA? A meta-analysis. Otolaryngol Head Neck Surg. 2015;153(3):326–33.

    CrossRef  Google Scholar 

  9. Leitzen KP, Brietzke SE, Lindsay RW. Correlation between nasal anatomy and objective obstructive sleep apnea severity. Otolaryngol Head Neck Surg. 2014;150(2):325–31.

    CrossRef  Google Scholar 

  10. Huang YS, Guilleminault C. Pediatric obstructive sleep apnea and the critical role of oral-facial growth: evidences. Front Neurol. 2013;3:184.

    CrossRef  Google Scholar 

  11. Shuaib SW, Undavia S, Lin J, Johnson CM Jr, Stupak HD. Can functional septorhinoplasty independently treat obstructive sleep apnea? Plast Reconstr Surg. 2015;135(6):1554–65.

    CAS  CrossRef  Google Scholar 

  12. Bican A, Kahraman A, Bora I, Kahveci R, Hakyemez B. What is the efficacy of nasal surgery in patients with obstructive sleep apnea syndrome? J Craniofac Surg. 2010;21(6):1801–6.

    CrossRef  Google Scholar 

  13. Ahlin S, Manco M, Panunzi S, Verrastro O, Giannetti G, Prete A, Guidone C, Berardino ADM, Viglietta L, Ferravante A, Mingrone G, Mormile F, Capristo E. A new sensitive and accurate model to predict moderate to severe obstructive sleep apnea in patients with obesity. Medicine (Baltimore). 2019;98(32):e16687.

    CrossRef  Google Scholar 

  14. Yeh PS, Lee YC, Lee WJ, Chen SB, Ho SJ, Peng WB, Tsao CC, Chiu HL. Clinical predictors of obstructive sleep apnea in Asian bariatric patients. Obes Surg. 2010;20(1):30–5. https://doi.org/10.1007/s11695-009-9854-2.

    CrossRef  PubMed  Google Scholar 

  15. Lee CH, Shin HW, Han DH, Mo JH, Yoon IY, Chung S, Choi HG, Kim JW. The implication of sleep position in the evaluation of surgical outcomes in obstructive sleep apnea. Otolaryngol Head Neck Surg. 2009;140(4):531–5.

    CrossRef  Google Scholar 

  16. Kim SH, Yang CJ, Baek JT, Hyun SM, Kim CS, Lee SA, Chung YS. Does rapid eye movement sleep aggravate obstructive sleep apnea? Clin Exp Otorhinolaryngol. 2019;12(2):190–5.

    CrossRef  Google Scholar 

  17. Fastenberg JH, Fang CH, Patel VM, Lin J, Stupak HD. The use of handheld nasal spirometry to predict the presence of obstructive sleep apnea. Sleep Breath. 2018;22(1):79–84.

    CrossRef  Google Scholar 

  18. Ishii L, Godoy A, Ishman SL, Gourin CG, Ishii M. The nasal obstruction symptom evaluation survey as a screening tool for obstructive sleep apnea. Arch Otolaryngol Head Neck Surg. 2011;137(2):119–23.

    CrossRef  Google Scholar 

  19. Shepard JW Jr, Burger CD. Nasal and oral flow-volume loops in normal subjects and patients with obstructive sleep apnea. Am Rev Respir Dis. 1990;142(6 Pt 1):1288–93.

    CrossRef  Google Scholar 

  20. Stupak HD, Park SY. Gravitational forces, negative pressure and facial structure in the genesis of airway dysfunction during sleep: a review of the paradigm. Sleep Med. 2018;51:125–32.

    CrossRef  Google Scholar 

  21. Genta PR, Edwards BA, Sands SA, Owens RL, Butler JP, Loring SH, White DP, Wellman A. Tube law of the pharyngeal airway in sleeping patients with obstructive sleep apnea. Sleep. 2016;39(2):337–43.

    CrossRef  Google Scholar 

  22. Jian Y, Bao FP, Liang Y. Effectiveness of breathing through nasal and oral routes in unconscious apneic adult human subjects: a prospective randomized crossover trial. Anesthesiology. 2011;115(1):129–35.

    CrossRef  Google Scholar 

  23. Stupak HD. The human external nose and its evolutionary role in the prevention of obstructive sleep apnea. Otolaryngol Head Neck Surg. 2010;142(6):779–82.

    CrossRef  Google Scholar 

  24. Wang Y, Wang J, Liu Y, Yu S, Sun X, Li S, Shen S, Zhao W. Fluid-structure interaction modeling of upper airways before and after nasal surgery for obstructive sleep apnea. Int J Numer Method Biomed Eng. 2012;28(5):528–46.

    CrossRef  Google Scholar 

  25. Elliott AR, Shea SA, Dijk DJ, et al. Microgravity reduces sleep-disordered breathing in humans. Am J Respir Crit Care Med. 2001;164(3):478–85.

    CAS  CrossRef  Google Scholar 

  26. Kastoer C, Benoist LBL, Dieltjens M, Torensma B, de Vries LH, Vonk PE, Ravesloot MJL, de Vries N. Comparison of upper airway collapse patterns and its clinical significance: drug-induced sleep endoscopy in patients without obstructive sleep apnea, positional and non-positional obstructive sleep apnea. Sleep Breath. 2018;22(4):939–48.

    CAS  CrossRef  Google Scholar 

  27. Cartwright RD, Diaz F, Lloyd S. The effects of sleep posture and sleep stage on apnea frequency. Sleep. 1991;14(4):351–3.

    CAS  CrossRef  Google Scholar 

  28. Tong Y, Udupa JK, Sin S, Liu Z, Wileyto EP, Torigian DA, Arens R. MR image analytics to characterize the upper airway structure in obese children with obstructive sleep apnea syndrome. PLoS One. 2016;11(8):e0159327.

    CrossRef  Google Scholar 

  29. Brown EC, Cheng S, McKenzie DK, Butler JE, Gandevia SC, Bilston LE. Tongue stiffness is lower in patients with obstructive sleep apnea during wakefulness compared with matched control subjects. Sleep. 2015;38(4):537–44.

    CrossRef  Google Scholar 

  30. Turnbull CD, Wang SH, Manuel AR, Keenan BT, McIntyre AG, Schwab RJ, Stradling JR. Relationships between MRI fat distributions and sleep apnea and obesity hypoventilation syndrome in very obese patients. Sleep Breath. 2018;22(3):673–81.

    CAS  CrossRef  Google Scholar 

  31. Kim AM, Keenan BT, Jackson N, Chan EL, Staley B, Poptani H, Torigian DA, Pack I, Schwab RJ. Tongue fat and its relationship to obstructive sleep apnea. Sleep. 2014;37(10):1639–48.

    CrossRef  Google Scholar 

  32. Ito E, Tsuiki S, Maeda K, Okajima I, Inoue Y. Oropharyngeal crowding closely relates to aggravation of OSA. Chest. 2016;150(2):346–52.

    CrossRef  Google Scholar 

  33. Naughton JP, Lee AY, Ramos E, Wootton D, Stupak HD. Effect of nasal valve shape on downstream volume, airflow, and pressure drop: importance of the nasal valve revisited. Ann Otol Rhinol Laryngol. 2018;127(11):745–53.

    CrossRef  Google Scholar 

  34. www.formula1-dictionary.net.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Stupak, H.D. (2020). Nasal Function and Sleep Disorders. In: Rethinking Rhinoplasty and Facial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-44674-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44674-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44673-4

  • Online ISBN: 978-3-030-44674-1

  • eBook Packages: MedicineMedicine (R0)