Skip to main content

The Invisible Forces in Our Nasal Airway: Air Flow and Cavity Negative Pressure

Nasal Obstruction Versus Nasal Underuse: Are the Turbinates the Problem or the Solution?

  • Chapter
  • First Online:
Rethinking Rhinoplasty and Facial Surgery

Abstract

The sensation of reduced ability to breathe through the nose is very common among patients. Most clinicians consider a laundry-list of etiologies that are the possible causes of these problems. In reality, there may be a more useful differentiation of cause of this sensation between true nasal obstruction due to physical blockage from the nostrils through the nasal cavity, and secondary obstruction, known as nasal disuse or underuse which is due to nocturnal mouth-breathing. This entity known as nasal underuse causes a spectrum of problems that overlaps the diagnosis of nasal allergy, with enlarged/inflamed turbinates and nasal mucosa. The diagnostic differentiation between nasal obstruction and nasal underuse is critical to performing successful surgery, as in the long-term, nasal underuse is not treatable with nasal surgery, despite popular treatments. In contrast, nasal underuse can only be treated with strategies that encourage mouth-closure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dowsett EB. Discussion on mouth breathing and nasal obstruction. Proc R Soc Med. 1932;25(8):1343–55.

    Google Scholar 

  2. Nunez DA, Bradley PJ. A randomised clinical trial of turbinectomy for compensatory turbinate hypertrophy in patients with anterior septal deviations. Clin Otolaryngol Allied Sci. 2000;25(6):495–8.

    Article  CAS  Google Scholar 

  3. Illum P. Septoplasty and compensatory inferior turbinate hypertrophy: long-term results after randomized turbinoplasty. Eur Arch Otorhinolaryngol. 1997;254(Suppl 1):S89–92.

    Article  Google Scholar 

  4. Sharhan SSA, Lee EJ, Hwang CS, Nam JS, Yoon JH, Kim CH, Cho HJ. Radiological comparison of inferior turbinate hypertrophy between allergic and non-allergic rhinitis: does allergy really augment turbinate hypertrophy? Eur Arch Otorhinolaryngol. 2018;275(4):923–9.

    Article  Google Scholar 

  5. Grutzenmacher S, Robinson DM, Grafe K, Lang C, Mlynski G. First findings concerning airflow in noses with septal deviation and compensatory turbinate hypertrophy–a model study. ORL J Otorhinolaryngol Relat Spec. 2006;68(4):199–205.

    Article  CAS  Google Scholar 

  6. Kato T, Masuda Y, Yoshida A, Morimoto T. Masseter EMG activity during sleep and sleep bruxism. Arch Ital Biol. 2011;149(4):478–91.

    CAS  PubMed  Google Scholar 

  7. Ikawa Y, Mochizuki A, Katayama K, Kato T, Ikeda M, Abe Y, Nakamura S, Nakayama K, Wakabayashi N, Baba K, Inoue T. Effects of citalopram on jaw-closing muscle activity during sleep and wakefulness in mice. Neurosci Res. 2016;113:48–55.

    Article  CAS  Google Scholar 

  8. Wang Y, Wang J, Liu Y, Yu S, Sun X, Li S, Shen S, Zhao W. Fluid-structure interaction modeling of upper airways before and after nasal surgery for obstructive sleep apnea. Int J Numer Method Biomed Eng. 2012;28(5):528–46.

    Article  Google Scholar 

  9. Rhee JS, Weaver EM, Park SS, et al. Clinical consensus statement: diagnosis and management of nasal valve compromise. Otolaryngol Head Neck Surg. 2010;143(1):48–59.

    Article  Google Scholar 

  10. Li C, Farag AA, Leach J, Deshpande B, Jacobowitz A, Kim K, Otto BA, Zhao K. Computational fluid dynamics and trigeminal sensory examinations of empty nose syndrome patients. Laryngoscope. 2017;127(6):E176–84.

    Article  Google Scholar 

  11. Balakin BV, Farbu E, Kosinski P. Aerodynamic evaluation of the empty nose syndrome by means of computational fluid dynamics. Comput Methods Biomech Biomed Eng. 2017;20(14):1554–61.

    Article  Google Scholar 

  12. de Moura BH, Migliavacca RO, Lima RK, et al. Partial inferior turbinectomy in rhinoseptoplasty has no effect in quality-of-life outcomes: a randomized clinical trial. Laryngoscope. 2018;128(1):57–63.

    Article  Google Scholar 

  13. Harju T, Numminen J, Kivekäs I, Rautiainen M. A prospective, randomized, placebo-controlled study of inferior turbinate surgery. Laryngoscope. 2018;128(9):1997–2003.

    Article  Google Scholar 

  14. Zang HR, Li LF, Zhou B, Li YC, Wang T, Han DM. Pharyngeal aerodynamic characteristics of obstructive sleep apnea/hypopnea syndrome patients. Chin Med J. 2012;125(17):3039–43.

    PubMed  Google Scholar 

  15. Naughton JP, Lee AY, Ramos E, Wootton D, Stupak HD. Effect of nasal valve shape on downstream volume, airflow, and pressure drop: importance of the nasal valve revisited. Ann Otol Rhinol Laryngol. 2018;127(11):745–53.

    Article  Google Scholar 

  16. Genta PR, Edwards BA, Sands SA, Owens RL, Butler JP, Loring SH, White DP, Wellman A. Tube law of the pharyngeal airway in sleeping patients with obstructive sleep apnea. Sleep. 2016;39(2):337–43.

    Article  Google Scholar 

  17. Owens RL, Edwards BA, Sands SA, Butler JP, Eckert DJ, White DP, Malhotra A, Wellman A. The classical Starling resistor model often does not predict inspiratory airflow patterns in the human upper airway. J Appl Physiol. 2014;116(8):1105–12.

    Article  Google Scholar 

  18. Sériès F, Chakir J, Boivin D. Influence of weight and sleep apnea status on immunologic and structural features of the uvula. Am J Respir Crit Care Med. 2004;170(10):1114–9.

    Article  Google Scholar 

  19. McNicholas WT. The nose and OSA: variable nasal obstruction may be more important in pathophysiology than fixed obstruction. Eur Respir J. 2008;32(1):3–8.

    Article  CAS  Google Scholar 

  20. Stupak HD, Park SY. Gravitational forces, negative pressure and facial structure in the genesis of airway dysfunction during sleep: a review of the paradigm. Sleep Med. 2018;51:125–32.

    Article  Google Scholar 

  21. Behrbohm H, Tardy E. Essentials of septorhinoplasty, 2nd ed. Stuttgart; New York: Thieme; 2017.

    Google Scholar 

  22. Stewart MG, Witsell DL, Smith TL, et al. Development and validation of the Nasal obstructions symptom evaluation (NOSE) scale. Otolaryngol Head Neck Surg. 2004;130(20):157–63.

    Article  Google Scholar 

  23. Lipen MJ, Most SM. Development of a severity classification system for subjective nasal obstruction. JAMA Facial Plast Surg. 2013;15(5):358–61.

    Article  Google Scholar 

  24. Mohan S, Fuller JC, Ford SF, Lindsay RW. Diagnostic and therapeutic management of nasal airway obstruction: advances in diagnosis and treatment. JAMA Facial Plast Surg. 2018;20(5):409–18.

    Article  Google Scholar 

  25. Leitzen KP, Brietzke SE, Lindsay RW. Correlation between nasal anatomy and objective obstructive sleep apnea severity. Otolaryngol Head Neck Surg. 2014;150(2):325–31.

    Article  Google Scholar 

  26. Bailey RS, Casey KP, Pawar SS, Garcia GJ. Correlation of nasal mucosal temperature with subjective nasal patency in healthy individuals. JAMA Facial Plast Surg. 2017;19(1):46–52.

    Article  Google Scholar 

  27. Bonaparte JP, Campbell R. A prospective cohort study assessing the clinical utility of the Cottle maneuver in nasal septal surgery. J Otolaryngol Head Neck Surg. 2018;47(1):45.

    Article  Google Scholar 

  28. Jiang S, Davani A, Chen J, Stupak H. Thermal imaging as a potential measure of nasal airflow: a pilot study. Poster presentation at the 2019 american academy of facial plastic and reconstructive surgery spring meeting, Austin, Texas.

    Google Scholar 

  29. De Coster L, Eloy P, Ferdinande L, Taildeman J, Cuvelier CA, Watelet JB. Different types of tissue composition in inflammatory or reparative upper airway disorders. Rhinology. 2012;50(4):393–401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stupak, H.D. (2020). The Invisible Forces in Our Nasal Airway: Air Flow and Cavity Negative Pressure. In: Rethinking Rhinoplasty and Facial Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-44674-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44674-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44673-4

  • Online ISBN: 978-3-030-44674-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics