Skip to main content

Ligninase in Degradation of Lignocellulosic Wastes

  • Chapter
  • First Online:
Enzymes in Degradation of the Lignocellulosic Wastes

Abstract

Agro-industrial waste industries are the largest polluting industries in the world with the potential application of biofuels or biosources. From the past several years, the worldwide economic and environmental pollution issues have been escalating research interest in the value of biosourced lignocellulosic biomass. The limited resource of fossil fuels and the rapid increase in energy demand has placed immense on the environment. Microbes are known to produce lignin modifying enzymes with high activity and specificity. Four enzymes namely lignin peroxidase, manganese peroxidase, versatile peroxidase, and Laccase are effective in lignin degradation. Dye decoloration is also reported activity together with it. Several fungal and bacterial species are discussed that may enhance production or lignin degradation. This chapter provides a general overview of the suitability of lignin-modifying enzymes used for different agro-industrial wastes and also deals with the use of these enzymes in the development of economic biocatalysts that are more sustainable. This may reduce harmful environmental impacts and improve the applications of enzymatic technology in the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal K, Bhardwaj N, Kumar B et al (2019) Process optimization, purification and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. Int J Biol Macromol 15:1042–1055

    Article  CAS  Google Scholar 

  • Agrawal N, Verma P, Shahi S (2018) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Biores Biopro 5:11

    Article  Google Scholar 

  • Ander P, Mishra C, Farrell R, Eriksson K (1990) Redox reactions in lignin degradation: Interactions between laccase, different peroxidases and cellobiose: quinone oxidoreductase. J Biotechnol 13:189–198

    Article  CAS  Google Scholar 

  • Archibald F (1992) A new assay for lignin-type peroxidases employing the dye Azure B. Appl Environ Microbiol 58:3110–3116

    Article  CAS  Google Scholar 

  • Ardon O, Kerem Z, Hadar Y (1998) Enhancement of lignin degradation and laccase activity in Pleurotus ostreatus by cotton stalk extract. Can J Microbiol 44:676–680

    Article  CAS  Google Scholar 

  • Arora D, Gill P (2001) Comparison of two assay procedures for lignin peroxidase. Enzyme Microb Technol 28:602–605

    Article  CAS  Google Scholar 

  • Baunsgaard L, Dalboge H, Houen G et al (1993) Amino acid sequence of Coprinus macrorhizus peroxidase and cDNA sequence encoding Coprinus cinereus peroxidase: a new family of fungal peroxidases. Eur J Biochem 1(213):605–611

    Article  Google Scholar 

  • Bechem E, Etaka S (2018) Screening of fungi isolated from household waste materials for ligninase activity. Int J Curr Res Biosci Plant Biol 5:1–28

    Article  CAS  Google Scholar 

  • Boruah P, Sarmah P, Das P, Goswami T (2019) Exploring the lignolytic potential of a new laccase producing strain Kocuria sp. PBS-1 and its application in bamboo pulp bleaching. Int Biodeterior Biodegrad 143:104726

    Google Scholar 

  • Brink D, Ravi K, Lidén G, Gorwa-Grauslund M (2019) Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 103:3979–4002

    Article  CAS  Google Scholar 

  • Butler M, Day A (1998) Destruction of fungal melanins by ligninases of Phanerochaete chrysosporium and other white rot fungi. Int J Plant Sci 159:989–995

    Article  CAS  Google Scholar 

  • Canales M, Lobos S, Vicuna R (1998) Molecular modeling of manganese peroxidase from the lignin-degrading fungus Cerioporiopsis subvermispora and structural comparison with other peroxidases. Electron J Biotechnol 1:25–96

    Article  Google Scholar 

  • Chen M, Yao S, Zhang H, Liang X (2010) Purification and characterization of a versatile peroxidase from edible mushroom Pleurotus eryngii. Chinese J Chem Eng 18:824–829

    Article  CAS  Google Scholar 

  • Cheng Z, Xiang-hua W, Ping N (2013) Continuous acid blue 45 decolorization by using a novel open fungal reactor system with ozone as the bactericide. Biochem Eng J 79:246–252

    Article  CAS  Google Scholar 

  • Collins P, Field J, Teunissen P, Dobson A (1997) Stabilization of lignin peroxidases in white rot fungi by tryptophan. Appl Environ Microbiol 63:2543–2548

    Article  CAS  Google Scholar 

  • da Silva B, Gomes Correa R, Kato C et al (2016) Characterization of a solvent-tolerant manganese peroxidase from Pleurotus pulmonarius and its application in dye decolorization. Curr Biotechnol 6:318–324

    Google Scholar 

  • Dandare S, Young J, Kelleher B, Allen C (2019) The distribution of novel bacterial laccases in alpine paleosols is directly related to soil stratigraphy. Sci Total Environ 671:19–27

    Article  CAS  Google Scholar 

  • Dosoretz C, Chen H, Grethlein H (1990) Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 56:395–400

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Dean J, Eriksson K (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    Article  CAS  Google Scholar 

  • Feng N, Guo L, Ren H et al (2019) Changes in chemical structures of wheat straw auto-hydrolysis lignin by 3-hydroxyanthranilic acid as a laccase mediator. Int J Biol Macromol 122:210–215

    Article  CAS  Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20:1727–1737

    Article  CAS  Google Scholar 

  • Gaskell J, Dieperink E, Cullen D (1991) Genomic organization of lignin peroxidase genes of Phanerochaete chrysosporium. Nucleic Acids Res 19:599–603

    Article  CAS  Google Scholar 

  • Glumoff T, Harvey J, Molinari S et al (1990) Lignin peroxidase from Phanerochaete-chrysosporium molecular and kinetic characterization of isozymes. Eur J Biochem 187:515–520

    Article  CAS  Google Scholar 

  • Godfrey B, Mayfield M, Brown J, Gold M (1990) Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93:119–124

    Article  CAS  Google Scholar 

  • Hariharan S, Nambisan P (2013) Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources 8:250–271

    Google Scholar 

  • Hatakka A, Lundell T, Hofrichter M, Maijala P (2003) Manganese peroxidase and its role in the degradation of wood lignin. ACS Symp Series 855:230–243

    Article  CAS  Google Scholar 

  • Herzog V, Fahimi H (1973) A new sensitive colorimetric assay for peroxidase using 3,3′-diaminobenzidine as hydrogen donor. Anal Biochem 55:554–562

    Article  CAS  Google Scholar 

  • Hilden K, Martinez A, Hatakka A, Lundell T (2005) The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42:403–419

    Article  CAS  Google Scholar 

  • Hilden K, Makela M, Hakala T et al (2006) Expression on wood, molecular cloning and characterization of three lignin peroxidase (LiP) encoding genes of the white rot fungus Phlebia radiata. Curr Genet 49:97–105

    Article  CAS  Google Scholar 

  • Horisawa S, Inoue A, Yamanaka Y (2019) Direct ethanol production from lignocellulosic materials by mixed culture of wood rot fungi Schizophyllum commune, Bjerkandera adusta, and Fomitopsis palustris. Fermentation 5:1–8

    Article  CAS  Google Scholar 

  • Huang S, Tzean S, Tsai B, Hsieh H (2009) Cloning and heterologous expression of a novel ligninolytic peroxidase gene from poroid brown-rot fungus Antrodia cinnamomea. Microbiol 155:424–433

    Article  CAS  Google Scholar 

  • Irie T, Honda Y, Watanabe T, Kuwahara M (2001) Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus. Appl Microbiol Biotechnol 55:566–570

    Article  CAS  Google Scholar 

  • Jarvinen J, Taskila S, Isomaki R, Ojamo H (2012) Screening of white-rot fungi manganese peroxidases: A comparison between the specific activities of the enzyme from different native producers. AMB Express 2:1–9

    Article  CAS  Google Scholar 

  • Jing D, Wang J (2012) Controlling the simultaneous production of laccase and lignin peroxidase from Streptomyces cinnamomensis by medium formulation. Biotechnol Biofuels 5:1–7

    Article  CAS  Google Scholar 

  • Johansson T, Welinder K, Nyman P (1993) Isozymes of lignin peroxidase and manganese (II) peroxidase from the white-rot basidiomycete Trametes versicolor. II. Partial sequences, peptide maps, and amino acid and carbohydrate compositions. Arch Biochem Biophys 300:57–62

    Article  CAS  Google Scholar 

  • de Jong E, Field J, de Bont J (1992) Evidence for a new extracellular peroxidase manganese-inhibited peroxidase from the white-rot fungus Bjerkanderasp. BOS 55. FEBS Lett 299:107–110

    Article  Google Scholar 

  • Kapich A, Prior B, Botha A et al (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb Technol 34:187–195

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons B, Blanch H (2010) Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries. Biomass Bioenergy 34:1914–1921

    Article  CAS  Google Scholar 

  • Kuhar F, Castiglia V, Zamora J (2016) Detection of manganese peroxidase and other exoenzymes in four isolates of Geastrum (Geastrales) in pure culture. Rev Argent Microbiol 48:274–278

    Google Scholar 

  • Leonowicz A, Cho N, Luterek J et al (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  CAS  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J et al (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  CAS  Google Scholar 

  • Lestan D, Strancar A, Perdih A (1990) Influence of some oils and surfactants on ligniolytic activity, growth and lipid fatty acids of Phanerochaete chrysosporium. Appl Microbiol Biotechnol 34:426–428

    CAS  Google Scholar 

  • Lewis N, Yamamoto E (1990) Lignin: Occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol 41:455–496

    Article  CAS  Google Scholar 

  • Linko S (1992) Production of Phanerochaete chrysosporium lignin peroxidase. Biotechnol Adv 40:494–498

    Google Scholar 

  • Liu J, Zhang S, Shi Q et al (2019) Highly efficient oxidation of synthetic and natural lignin-related compounds by Physisporinus vitreus versatile peroxidase. Int Biodeterior Biodegrad 136:41–48

    Article  CAS  Google Scholar 

  • Majumdar S, Lukk T, Solbiati J et al (2014) Roles of small laccases from streptomyces in lignin degradation. Biochem 53(24):4047–4058

    Article  CAS  Google Scholar 

  • Makela M, Marinović M, Nousiainen P et al (2015) Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass. Adv Appl Microbiol 91:63–137

    Article  CAS  Google Scholar 

  • Martinez D, Larrondo L, Putnam N et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  Google Scholar 

  • Moreira P, Almeida-Vara E, Malcata F, Duarte J (2007) Lignin transformation by a versatile peroxidase from a novel Bjerkanderasp. strain. Int Biodeterior Biodegrad 59:234–238

    Article  CAS  Google Scholar 

  • Naidu P, Reddy C (1992) Nucleotide sequence of a new lignin peroxidase gene GLG3 from the white-rot fungus, Phanerochaete chrysosporium. Nucleic Acids Res 20:4124

    Google Scholar 

  • Nerud F, Misurcova Z (1996) Distribution of ligninolytic enzymes in selected white-rot fungi. Folia Microbiol (Praha) 41:264–266

    Article  CAS  Google Scholar 

  • Orth A, Rzhetskaya M, Cullen D, Tien M (1994) Characterization of a cDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: genomic organization of lignin and manganese peroxidase-encoding genes. Gene 148:161–165

    Article  CAS  Google Scholar 

  • Ozcirak S, Ozturk R (2017) Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Ann Agrar Sci 15:273–277

    Article  Google Scholar 

  • Pazarlioglu N, Urek R, Ergun F (2005) Biodecolourization of direct blue 15 by immobilized Phanerochaete chrysosporium. Process Biochem 40:1923–1929

    Article  CAS  Google Scholar 

  • Pease E, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174:3532–3540

    Article  CAS  Google Scholar 

  • Perez-Boada M, Ruiz-Dueñas F, Pogni R et al (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Article  CAS  Google Scholar 

  • Philip R, Kachiprath B, Solomon S, Jayanath G (2019) Mangrove microflora as potential source of hydrolytic enzymes for commercial applications. Ind J Geo-Marine Sci 48:678–684

    Google Scholar 

  • Pozdnyakova N, Makarov O, Chernyshova M et al (2013) Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity. Enzyme Microb Technol 52:44–53

    Article  CAS  Google Scholar 

  • Rai R, Bibra M, Chadha B, Sani R (2019) Enhanced hydrolysis of lignocellulosic biomass with doping of a highly thermostable recombinant laccase. Int J Biol Macromol 137:232–237

    Article  CAS  Google Scholar 

  • Rajan A, Kurup J, Abraham T (2010) Solid state production of manganese peroxidases using arecanut husk as substrate. Brazi Arch Biol Technol 53:555–562

    Article  CAS  Google Scholar 

  • Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56:240–249

    Article  CAS  Google Scholar 

  • Reina R, Kellner H, Hess J et al (2019) Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLoS One

    Google Scholar 

  • Ritch T, Gold M (1992) Characterization of a highly expressed lignin peroxidase-encoding gene from the basidiomycete Phanerochaete chrysosporium. Gene 118:73–80

    Article  CAS  Google Scholar 

  • Ritch T, Nipper V, Akileswaran L et al (1991) Lignin peroxidase from the basidiomycete Phanerochaete chrysosporium is synthesized as a preproenzyme. Gene 14:e0212769

    Google Scholar 

  • Ruiz-Duenas F, Martínez M, Martínez A (1999) Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Article  CAS  Google Scholar 

  • Sawai-Hatanaka H, Ashikari T, Tanaka Y et al (1995) Cloning, sequencing, and Heterologous expression of a gene coding for Arthromyces Ramosus peroxidase. Biosci Biotechnol Biochem 59:1221–1228

    Article  CAS  Google Scholar 

  • Schuttmann I, Bouws H, Szweda R et al (2014) Induction, characterization, and heterologous expression of a carotenoid degrading versatile peroxidase from Pleurotus sapidus. J Mol Catal B Enzym 103:79–84

    Article  CAS  Google Scholar 

  • Sridhar M (2016) Versatile Peroxidases: Super peroxidases with potential biotechnological applications—a mini review. J Dairy Vet Anim Res 4:00116

    Article  Google Scholar 

  • Stajich J, Wilke S, Ahrén D et al (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci 107:11889–11894

    Article  CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold M, Poulos T (1994) Preliminary crystallographic analysis of manganese peroxidase from Phanerochaete chrysosporium. J Mol Biol 238:845–848

    Article  CAS  Google Scholar 

  • Usha K, Praveen K, Reddy B (2014) Enhanced production of ligninolytic enzymes by a mushroom Stereum ostrea. Biotechnol Res Int 2014:1–9

    Article  Google Scholar 

  • Vanholme R, Demedts B, Morreel K et al (2010) Lignin biosynthesis and structure. Plant Physiol 153:895–905

    Article  CAS  Google Scholar 

  • Vazquez M, Cabrera E, Aceves M, Mallol J (2019) Cellulolytic and ligninolytic potential of new strains of fungi for the conversion of fibrous substrates. Biotechnol Res Innov 3:177–186

    Article  Google Scholar 

  • Venkatadri R, Irvine R (1990) Effect of agitation on ligninase activity and ligninase production of Phanerochaete chrysosporium. Appl Environ Microbiol 56:2684–2691

    Article  CAS  Google Scholar 

  • Verdín J, Pogni R, Baeza A et al (2006) Mechanism of versatile peroxidase inactivation by Ca2+ depletion. Biophys Chem 121:163–170

    Article  CAS  Google Scholar 

  • Walther I, Kalin M, Reiser J et al (1988) Molecular analysis of a Phanerochaete chrysosporium lignin peroxidase gene. Gene 70:127–137

    Article  CAS  Google Scholar 

  • Wang P, Hu X, Cook S et al (2008) Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J Microbiol Biotechnol 24:2205–2212

    Article  CAS  Google Scholar 

  • Wang X, Ruckenstein E (1994) Immobilization of Phanerochaete chrysosporium on porous polyurethane particles with application to biodegradation of 2-chlorophenol. Biotechnol Tech 8:339–344

    Article  CAS  Google Scholar 

  • Whitaker B, Bauer J, Bever J, Clay K (2017) Negative plant-phyllosphere feedbacks in native Asteraceae hosts—a novel extension of the plant-soil feedback framework. Ecol Lett 20:1064–1073

    Article  Google Scholar 

  • Wuyep P, Khan A, Nok A (2003) Production and regulation of lignin degrading enzymes from Lentinus squarrosulus (mont.) Singer and Psathyrella atroumbonata Pegler. Afr J Biotechnol 2:444–447

    Article  CAS  Google Scholar 

  • Xiong X, Wen X, Bai Y, Qian Y (2008) Effects of culture conditions on ligninolytic enzymes and protease production by Phanerochaete chrysosporium in air. J Environ Sci 20:94–100

    Article  CAS  Google Scholar 

  • Yang Y, Song W, Hur H et al (2019) Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin. Int J Biol Macromol 124:200–208

    Article  CAS  Google Scholar 

  • Zhang Y, Reddy C, Rasooly A (1991) Cloning of several lignin peroxidase (LIP)-encoding genes: sequence analysis of the LIP6 gene from the white-rot basidiomycete, Phanerochaete chrysosporium. Gene 97:191–198

    Article  CAS  Google Scholar 

  • Zhao M, Zhang C, Zeng G et al (2015) Growth, metabolism of Phanerochaete chrysosporium and route of lignin degradation in response to cadmium stress in solid-state fermentation. Chemosphere 138:560–567

    Article  CAS  Google Scholar 

  • Zheng Y, Guo M, Zhou Q, Liu H (2019) Effect of lignin degradation product sinapyl alcohol on laccase catalysis during lignin degradation. Ind Crops Prod 139:1–9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna B. Gunjal .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunjal, A.B., Patil, N.N., Shinde, S.S. (2020). Ligninase in Degradation of Lignocellulosic Wastes. In: Enzymes in Degradation of the Lignocellulosic Wastes. Springer, Cham. https://doi.org/10.1007/978-3-030-44671-0_4

Download citation

Publish with us

Policies and ethics