Skip to main content

On the Computational Methods in Non-linear Design of Experiments

  • Chapter
  • First Online:
Book cover Computational Mathematics and Variational Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 159))

  • 772 Accesses

Abstract

In this paper the non-linear problem is discussed, for point and interval computational estimation. For the interval estimation an adjusted formulation is discussed due to Beale’s measure of non-linearity. The non-linear experimental design problem is regarded when the errors of observations are assumed i.i.d. and normally distributed as usually. The sequential approach is adopted. The average-per-observation information matrix is adopted to the developed theoretical approach. Different applications are discussed and we provide evidence that the sequential approach might be the panacea for solving a non-linear optimal experimental design problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.M. Bates, D.G. Watts, Non-linear Regression Analysis and its Applications (John Wiley and Sons, Hoboken, 1998)

    Google Scholar 

  2. E.M.L. Beale, Confidence regions in non-linear estimation. J. R. Stat. Soc. Ser. B Methodol. 22, 41–88 (1960)

    MathSciNet  MATH  Google Scholar 

  3. D.S. Borowiak, Model Discrimination in Nonlinear Regression Models (Marcel Dekker, New York, 1989)

    MATH  Google Scholar 

  4. P. Chadhuri, P.A. Mykland, Nonlinear experiments: optimal design and inference based on likelihood. J. Am. Stat. Assoc. 88, 538–546 (1995)

    Article  MathSciNet  Google Scholar 

  5. P. Chadhuri, P.A. Mykland, In efficient designing of nonlinear experiments. Statistica Sinica 5, 421–440 (1995)

    MathSciNet  MATH  Google Scholar 

  6. D.J. Finney, Statistical Methods in Biological Assay (C. Griffin and Co. Ltd., Glasgow, 1978)

    MATH  Google Scholar 

  7. I. Ford, C.P. Kitsos, D.M. Titterington, Recent advances in non-linear experimental design. Technometrics 31, 49–60 (1989)

    Article  MathSciNet  Google Scholar 

  8. R.J. Jennrich, Asymptotic properties of non-linear least squares estimators. Ann. Math. Stat. 40, 633–643 (1969)

    Article  MathSciNet  Google Scholar 

  9. C.P. Kitsos, Design and Inference for the Nonlinear Problems. Ph.D. Thesis. Glasgow (1986)

    Google Scholar 

  10. C.P. Kitsos, Fully-sequential procedures in nonlinear design problems. Comp. Stat. Data Anal. 8, 13–19 (1989)

    Article  MathSciNet  Google Scholar 

  11. C.P. Kitsos, Adopting sequential procedures for biological experiments. In: MODA3 (Model Oriented Data Analysis), ed. by W.G. Muller, H.P. Wynn, A.A. Zhigliavsky (Physica-Verlag, Heidelberg, 1992), pp. 3–9

    Google Scholar 

  12. C.P. Kitsos, On the support points of D-optimal nonlinear experiment design for chemical kinetics. In: Model Oriented Data Analysis, ed. by C. Kitsos, W. Mueller (Physica-Verlag, Heidelberg, 1995), pp. 71–76

    Chapter  Google Scholar 

  13. C.P. Kitsos, The role of covariates in experimental carcinogenesis. Biomed. Lett. 35, 95–106 (1998)

    MathSciNet  MATH  Google Scholar 

  14. C.P. Kitsos, Optimal designs for estimating the percentiles of the risk in multistage models in carcinogenesis. Biomet. J. 41, 33–43 (1999)

    Article  MathSciNet  Google Scholar 

  15. C.P. Kitsos, Design aspects for the Michaelis-Menten model. Biomet Lett. 38, 53–66 (2001)

    Google Scholar 

  16. C.P. Kitsos, Optimal design for bioassays in carcinogenesis. In: Quantitative Methods for Cancer and Human Health Risk Assessment, ed. by L. Edler, C. Kitsos (Wiley, Hoboken, 2005), pp. 267–279

    Google Scholar 

  17. C.P. Kitsos, L. Edler, Cancer risk assessment for mixtures. In: Quantitative Methods for Cancer and Human Health Risk Assessment, ed. by L. Edler, C. Kitsos (Wiley, Hoboken, 2005), pp. 283–298

    Google Scholar 

  18. C.P. Kitsos, K.G. Kolovos, A compilation of the D-optimal designs in chemical kinetics. Chem. Eng. Commun. 200(2), 185–204 (2013). http://dx.doi.org/10.1080/00986445.2012.699481

    Article  Google Scholar 

  19. C.P. Kitsos, K.G. Kolovos, Optimal Calibration Procedures for Calibrating the pH Meters (Lambert Academic Publishing, Saarbrücken, 2010). ISBN: 978-3-8433-5286-4

    Google Scholar 

  20. C.P. Kitsos, Ch.H. Muller, Robust estimation of non-linear aspects. In: MODA4 (Model Oriented Data Analysis), ed. by C. Kitsos, W. Muller (Physica, Heidelberg, 1995), pp. 71–76

    Chapter  Google Scholar 

  21. C.P. Kitsos, Ch.H. Muller, Robust linear calibration. Statistics 27, 93–103 (1995)

    Article  MathSciNet  Google Scholar 

  22. C.P. Kitsos, D.M. Titterington, B. Torsney, An optimal design problem in rhythmometry. Biometrics 44, 657–671 (1988)

    Article  MathSciNet  Google Scholar 

  23. P. McCallagh, J. Nelder, Generalized Linear Models (Chapman and Hall, London, 1989)

    Book  Google Scholar 

  24. J.M. Ortega, W.C. Pheinfold, Iterative Solution of Nonlinear Equation in Several Variables (Academic, London, 1970)

    Google Scholar 

  25. F. Pukelsheim, Optimal Design of Experiments (John Wiley, Hoboken, 1993)

    MATH  Google Scholar 

  26. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  27. D.J. Sakrison, Efficient recursive estimation: application to estimating the parameters of a covariance function. Int. J. Eng. Sci. 3, 461–483 (1965)

    Article  MathSciNet  Google Scholar 

  28. G.A.F. Seber, C.J. Wild, Nonlinear Regression (John Wiley and Sons, Hoboken, 1989)

    Book  Google Scholar 

  29. M.J. Silvapulle, On the existence of the maximum likelihood estimators for the binomial response models. J. R. Stat. Soc. Ser. B Methodol. 43, 310–313 (1981)

    MathSciNet  MATH  Google Scholar 

  30. S.D. Silvey, Optimal Design (Chapman and Hall, London, 1980)

    Book  Google Scholar 

  31. R.R. Sitter, B. Torsney, D-optimal designs for generalized linear models. In: MODA4 (Model Oriented Data Analysis), ed. by C. Kitsos, W. Muller (Physica, Heidelberg, 1995), pp. 87–102

    Chapter  Google Scholar 

  32. J. Wolfowitz, On the stochastic approximation method of Robbins and Monro. Ann. Math. Stat. 23, 457–461 (1973)

    Article  MathSciNet  Google Scholar 

  33. W. Wosniok, C. Kitsos, K. Watanabe, Statistical issues in the application of multistage and biologically based models. In: Prospective on Biologically Based Cancer Risk Assessment. NATO Pilot Study Publication ed. by V.J. Cogliano, G.E. Luebeck, G.A. Zapponi (Plenum Publishing Co., New York, 1998)

    Google Scholar 

  34. C.F.J. Wu, H.P. Wynn, The convergence of general step – length algorithms for regular optimum design criteria. Ann. Stat. 6, 1273–1285 (1978)

    Article  MathSciNet  Google Scholar 

  35. V. Zarikas, V. Gikas, C.P. Kitsos, Evaluation of the optimal design “cosinor model” for enhancing the potential of robotic theodolite kinematic observation. Measurement 43(10), 1416–1424 (2010). http://dx.doi.org/10.1016/j.measurement.2010.08.006

    Article  Google Scholar 

Download references

Acknowledgements

This research is based on the partial results of the fund by FCT—Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amílcar Oliveira .

Editor information

Editors and Affiliations

Appendix

Appendix

1. Local Selection Criteria for NLM

  • C1: Mallow’s C p-statistic \(C_p(\theta )=(\frac {RSS}{s^2})-n+2p\)

  • C2: Akaike’s criterion \(AC(\theta )=nln(\frac {RSS}{n}+\frac {n(n+p)}{n-p-2}\)

  • C3: Weighted \(WRSS(\theta )=\sum _{i}[\frac {(y_i-\hat {y}_i)^2}{1-W_i}]\)

  • C4: p—Weighted \(WRSS_p(\theta )=\frac {WRSS(\theta )}{s^2}-n+2p\)

  • C5: B-criterion \(B_{max}=\frac {RSS}{s^2}-(n-p)+3s^2B\)

with W i as defined in (9).

2. Proof of Proposition 5

Indeed from (19) for the true 𝜗, 𝜗 t and the estimate \(\hat {\vartheta }\) it holds for the corresponding sum of squares:

$$\displaystyle \begin{aligned} SS(\vartheta_t)-SS(\hat{\vartheta}){=}(\hat{\vartheta}-\vartheta_t)F'F(\hat{\vartheta}-\vartheta){=}(\hat{\vartheta}-\vartheta_t)'M^{-1}(\hat{\vartheta}-\vartheta)\leq Bps^2F(a;p,n-p) \end{aligned} $$
(29)

from ([9], pg.81) with B as in (26).

But B is as in [23] and we extend it to (28). We approximate B 0 by the value of the intrinsic curvature of the model γ max. This curvature provides a measure to “how good is the target-plane approximation,” in other words “how far from linear” is the model. But there is an upper bound of γ max, see ([28], pg.135), namely

$$\displaystyle \begin{aligned} B_0\cong \gamma_{max} < \frac{1}{2}(F(a;p,n-p))^{-\frac{1}{2}}=\gamma_0. \end{aligned} $$
(30)

So, with p = 1, it is \(F(a;1;n-p)=t_{n-p}^2\), i.e. \(\gamma _0=\frac {1}{2}t(a;n-1)\), that is, \(B=1+\frac {n}{n+1}B_0<1+\frac {n}{n-1}\frac {1}{2}t(a;n-1)\approx 2.2:=B_k\).

When p = 2, recall (26) and (30):

$$\displaystyle \begin{aligned} B=1+\frac{n(p+2)}{(n-p)p}B_0\cong 1+\frac{4n}{2(n-2)}\gamma_{max}<1+\frac{n}{n-2}\frac{1}{\sqrt{F}}=B_k. \end{aligned}$$

With p = 3 similar calculations provide evidence that \(B_k=1+0.41\frac {n}{n-3}\) approximating \(\sqrt {F}\) by a rough approximation 2 with n > 9 at a = 0.05.

Also with p ≥ 4 considering (29) and (30) the last part of (28) is defined, q.e.d.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kitsos, C.P., Oliveira, A. (2020). On the Computational Methods in Non-linear Design of Experiments. In: Daras, N., Rassias, T. (eds) Computational Mathematics and Variational Analysis. Springer Optimization and Its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-030-44625-3_11

Download citation

Publish with us

Policies and ethics