Skip to main content

Asymptotic Statistical Results: Theory and Practice

  • Chapter
  • First Online:
  • 780 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 159))

Abstract

The target of this paper is to discuss the existent difference of Asymptotic Theory in Statistics comparing to Mathematics. There is a need for a limiting distribution in Statistics, usually the Normal one. Adopting the sequential principle the first-order autoregression model and the stochastic approximation are referred for their particular interest for asymptotic results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.F. Andrews, A.M. Herzbg, A simple method for constructing exact tests for sequentially design experiments. Biometrika 60, 489–497 (1973)

    Article  MathSciNet  Google Scholar 

  2. Y. Bard, Nonlinear Parametric Estimation (Academic, Cambridge, 1974)

    MATH  Google Scholar 

  3. C.B. Bell, E.P. Smith, Inference for non-negative autoregressive schemes. Commun. Stat. Theory Methods 15, 2267–2293 (1986)

    Article  Google Scholar 

  4. G.E.P. Box, G.M. Jeckins, Time Series Analysis Forecasting and Control (Holden, San Francisco, 1970)

    Google Scholar 

  5. P. Chadhuri, P.A. Mykland, Nonlinear experiments: optimal design and inference based on likelihood. J. Am. Stat. Assoc. 88, 538–546 (1995)

    Article  MathSciNet  Google Scholar 

  6. P. Chadhuri, P.A. Mykland, In efficient designing of nonlinear experiments. Satistica Sinica 5, 421–440 (1995)

    MATH  Google Scholar 

  7. S.C. Choi, Interval estimation of the LD 50 based on an up-and-down experiment. Biometrics 46, 485–492 (1990)

    Article  Google Scholar 

  8. K.L. Chung, On a stochastic approximation method. Annal Math. Stat. 25, 463 (1954)

    Article  MathSciNet  Google Scholar 

  9. E.A. Cornish, R.A. Fisher, Moment and cumulants in the specification of distribution. Rev. Int. Stat. Inst. 5, 307–315 (1937)

    Article  Google Scholar 

  10. J.E. Dudewicz, Introduction to Statistic and Probability (Holt, Rinehart and Winston, New York, 1976)

    Google Scholar 

  11. I. Ford, Optimal static and sequential design: a critical review. Ph.D. Thesis. University of Glasgow (1976)

    Google Scholar 

  12. I. Ford, S.D. Silvey, A sequentially constructed design for estimating a nonlinear parametric function. Biometrika 67, 381–388 (1980)

    Article  MathSciNet  Google Scholar 

  13. I. Ford, D.M. Titterington, C.F.J. Wu, Inference and sequential design. Biometrika 72, 545–551 (1985)

    Article  MathSciNet  Google Scholar 

  14. I. Ford, C.P. Kitsos, D.M. Titterington, Recent advances in non-linear experimental design. Technometrics 31, 49–60 (1989)

    Article  MathSciNet  Google Scholar 

  15. H.L. Gray, S. Wang, A general method for approximating tail probabilities. J. Am. Stat. Assoc. 86, 160–166 (1991)

    Article  Google Scholar 

  16. F.A. Graybill, Theory and Application of the Linear Model (Duxbury Press, Massachusetts, 1976)

    MATH  Google Scholar 

  17. L. Guttman, R. Guttman, An illustration of the use of stochastic approximation. Biometrics 15, 551–559 (1959)

    Article  Google Scholar 

  18. J.L. Hodges, E.C. Lehman, Two approximations to the Robbins Monro process. In: Proceedings of the 3rd Berkley Symposium on Mathematical Statistics and Probability (University of California Press, Berkley, 1956), pp. 95–104

    Google Scholar 

  19. R.J. Jennrich, Asymptotic properties of non-linear Least Squares estimators. Ann. Math. Stat. 40, 633–643 (1969)

    Article  MathSciNet  Google Scholar 

  20. S. Kavlin, H. Taylor, A First Course in Stochastic Processes (Academic, Cambridge, 1975)

    Google Scholar 

  21. J. Kiefer, J. Wolfowitz, Stochastic estimation of the maximum of a regression function. Ann. Math Stat. 23, 462–466 (1952)

    Article  MathSciNet  Google Scholar 

  22. C.P. Kitsos, Design and inference for the nonlinear problems. Ph.D. Thesis. Glasgow (1986)

    Google Scholar 

  23. C.P. Kitsos, Fully-sequential procedures in nonlinear design problems. Comp. Stat. Data Anal. 8, 13–19 (1989)

    Article  MathSciNet  Google Scholar 

  24. C.P. Kitsos, Adopting sequential procedures for biological experiments. In: MODA3 (Model Oriented Data Analysis), ed. by W.G. Muller, H.P. Wynn, A.A. Zhigliavsky (Physica-Verlag, Heidelberg, 1992), pp. 3–9

    Google Scholar 

  25. C.P. Kitsos, Sequential assays for experimental cancinogenesis. In: ISI 50th Session, Book 1, Beijing (1995), pp. 625–626

    Google Scholar 

  26. C.P. Kitsos, Optimal designs for estimating the percentiles of the risk in multistage models in carcinogenesis. Biom. J. 41, 33–43 (1999)

    Article  MathSciNet  Google Scholar 

  27. C.P. Kitsos, Cancer Bioassays. A Statistical Approach (Lambert Academic Publishing, Saabrücken, 2012)

    Google Scholar 

  28. T.L. Lai, W. Siegmund, Fixed of an autoregressive parameter. Ann. Stat. 11, 478–485 (1983)

    Article  MathSciNet  Google Scholar 

  29. T.L. Lai, H. Robbins, Adaptive design and stochastic approximation. Ann. Stat. 7(6), 1196–1221 (1979)

    Article  MathSciNet  Google Scholar 

  30. T.L. Lai, C.Z. Wei, Least Squares estimates in stochastic regression models with applications to identification and central control dynamic systems. Biometrika Ann. Stat. 10, 154–166 (1982)

    Article  Google Scholar 

  31. J.M. Ortega, W.C. Pheinfold, Iterative Solution of Nonlinear Equation in Several Variables (Academic Press, Cambridge, 1970)

    Google Scholar 

  32. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  33. J. Sacks, Asymptotic distribution of stochastic approximation procedure. Annal. Math. Stat. 29, 373–405 (1958)

    Article  MathSciNet  Google Scholar 

  34. D.J. Sakrison, Efficient recursive estimation: application to estimating the parameters of a covariance function. Int. J. Eng. Sci. 3, 461–483 (1965)

    Article  MathSciNet  Google Scholar 

  35. P. Sebastiany, H.P. Wynn, Maximum entropy sampling and Bayesian experimental designs. J. R. Stat. Soc. Ser. B Methodol. 62, 145–157 (2000)

    Article  MathSciNet  Google Scholar 

  36. P. Shewry, H.P. Wynn, Maximum entropy sampling. Appl. Stat. 14, 165–170 (1987)

    Article  Google Scholar 

  37. M.J. Silvapulle, On the existence of the maximum likelihood estimators for the binomial response models. J. R. Stat. Soc. Ser. B Methodol. 43, 310–313 (1981)

    MathSciNet  MATH  Google Scholar 

  38. S.D. Silvey, Optimal Design (Chapman and Hall, London, 1980)

    Book  Google Scholar 

  39. J. Stewart, L. Gill, Econometrics (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  40. C.F.I. Wu, Asymptotic inference from sequential design in a nonlinear situation. Biometrika 72, 553–558 (1985)

    Article  MathSciNet  Google Scholar 

  41. C.F.J. Wu, H.P. Wynn, The convergence of general step – length algorithms for regular optimum design criteria. Ann. Stat. 6, 1273–1285 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is based on the partial results of the Funded by FCT—Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amílcar Oliveira .

Editor information

Editors and Affiliations

Appendix

Appendix

Let {X n} be a stochastic process such that the joint distribution of (X 1, X 2, …, X n) has a strictly positive continuous density. The sequence {X n} will be called absolute fair if for n = 1, 2, ….

The sequence {Y n}, with Y n = X 1 + X 2 + … + X n + c is a martingale if

provided that {X n} is absolutely fair.

Now,

Let \(\mathscr {A}_n\) be the σ-algebra generated by (Y 1, Y 2, …, Y n), as above, then

$$\displaystyle \begin{aligned} E(Y_{n+1}|\mathscr{A}_n)=Y_n \end{aligned}$$

from the martingale definition. We replace σ-algebra \(\mathscr {A}_n\) by a larger σ-algebra \(\mathscr {B}_n\): generated by (Y 1, Y 2, …, Y n and additional random variables depending on the past). The so create process \(\mathscr {B}_n\) (containing the past history of the process) is an increasing sequence, i.e. \(\mathscr {B}_1\subset \mathscr {B}_2\subset \ldots \). Then the sequence {Y n} is a martingale with respect to \(\mathscr {B}_n\) if and only if

$$\displaystyle \begin{aligned} E(Y_{n+1}|\mathscr{B}_n)=Y_n \end{aligned}$$

Since \(\mathscr {B}_n\supset \mathscr {B}_{n-1}\)

$$\displaystyle \begin{aligned} E(Y_{n+1}|\mathscr{B}_{n-1})=Y_{n-1} \end{aligned}$$

Now, a move general result helpful in sequential methods is

$$\displaystyle \begin{aligned} E(Y_n|\mathscr{B}_k)=Y_k, k=1,2,\ldots. \end{aligned}$$

That is the condition on knowledge expressed on \(\mathscr {B}_k\) provides knowledge for the martingale at the k-th stage.

The Martingale Convergence Theorem provides the mathematical insight for the limiting Normality of the stochastic approximation.

Let {Y n} be an (infinite) martingale with \(E\{Y_n^2\}<c<\infty \), ∀n. Then exists a random variable Y , such that

Furthermore E(Y n) = E(Y ), ∀n.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kitsos, C.P., Oliveira, A. (2020). Asymptotic Statistical Results: Theory and Practice. In: Daras, N., Rassias, T. (eds) Computational Mathematics and Variational Analysis. Springer Optimization and Its Applications, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-030-44625-3_10

Download citation

Publish with us

Policies and ethics