Skip to main content

Combining LSTM Artificial Recurrent Neural Networks and Fractal Analysis for Inventory Dynamics Prediction

  • Conference paper
  • First Online:
Book cover Reliability and Statistics in Transportation and Communication (RelStat 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 117))

  • 849 Accesses

Abstract

Because of seasonality of demand and periodicity of replenishments, inventory dynamics can be highly self-similar. This paper demonstrates that such metrics of fractal analysis as the Hurst exponent, correlation dimension and sample entropy indicate predictability of inventory dynamics by LSTM recurrent neural networks. From business point of view, this finding is useful, because one can spot time series with large self-similarity metrics prior to building the model saving time and computational budget as the result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IHL-Group, Buzek, G.: Research study: we lost Australia! retail’s $1.1 trillion inventory distortion problem (2015)

    Google Scholar 

  2. Gardner, E.: Evaluating forecast performance in an inventory control system. Manage. Sci. 36(4), 490–499 (1990)

    Article  Google Scholar 

  3. Spedding, T., Chan, K.: Forecasting demand and inventory management using Bayesian time series. Integr. Manufact. Syst. 11(5), 331–339 (2000)

    Article  Google Scholar 

  4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  5. Chen, K., Zhou, Y., Dai, F.: A LSTM-based method for stock returns prediction: a case study of China stock market. In: The 2015 IEEE International Conference on Big Data, pp. 2823–2824 (2015)

    Google Scholar 

  6. Mrazovic, P., Larriba-Pey, J., Matskin, M.: A Deep learning approach for estimating inventory rebalancing demand in bicycle sharing systems. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference, pp. 110–115 (2018)

    Google Scholar 

  7. Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Li, Z.: Deep multi-view spatial-temporal network for taxi demand prediction. In: 32nd AAAI Conference on Artificial Intelligence, pp. 217–226 (2018)

    Google Scholar 

  8. Qian, B., Rasheed, K.: Hurst exponent and financial market predictability. In: The IASTED Conference on Financial Engineering and Applications, pp. 203–209 (2004)

    Google Scholar 

  9. Eom, C., Choi, S., Oh, G., Jung, W.: Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets. Physica A: Stat. Mech. Appl. 387, 4630–4636 (2008)

    Article  Google Scholar 

  10. Alvarez-Ramirez, J., Alvarez, J., Rodriguez, E., Fernandez-Anaya, G.: Time-varying Hurst exponent for US stock markets. Physica A: Stat. Mech. Appl. 387(24), 6159–6169 (2008)

    Article  Google Scholar 

  11. Cui, D., Sun, Y.: A fractal-dimension-based study on optimization of spatial structure of Huzhou tourism scenic system. Sci. Geogr. Sinica 3, 9–15 (2011)

    Google Scholar 

  12. Soofi, A., Galka, A.: Measuring the complexity of currency markets by fractal dimension analysis. Int. J. Theor. Appl. Finance 6(06), 553–563 (2003)

    Article  Google Scholar 

  13. Richman, J., Moorman, J.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), 2039–2049 (2000)

    Article  Google Scholar 

  14. Yentes, J., Hunt, N., Schmid, K., Kaipust, J., McGrath, D., Stergiou, N.: The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 41(2), 349–365 (2013)

    Article  Google Scholar 

  15. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines. In: The 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  16. Anastassiou, G.: Multivariate hyperbolic tangent neural network approximation. Comput. Math Appl. 61(4), 809–821 (2011)

    Article  MathSciNet  Google Scholar 

  17. Graves, A., Jaitly, N., Mohamed, A.: Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 273–278 (2013)

    Google Scholar 

  18. Hurst, H.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770–799 (1951)

    Google Scholar 

  19. Mandelbrot, B., Wallis, J.: Operational hydrology. Water Resour. Res. 4(5), 909–918 (1968)

    Article  Google Scholar 

  20. Weron, R.: Estimating long-range dependence: finite sample properties and confidence intervals. Physica A: Stat. Mech. Appl. 312(1–2), 285–299 (2002)

    Google Scholar 

  21. Mandelbrot, B.: Limit theorems on the self-normalized range for weakly and strongly dependent processes. Z. Wahrscheinlichkeitstheorie verwandte Gebiete 31(4), 271–285 (1975)

    Article  MathSciNet  Google Scholar 

  22. Mandelbrot, B., Hudson, R.: The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward. Profile Books, London (2010)

    Google Scholar 

  23. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica: Nonlinear Phenom. 9(1–2), 189–208 (1983)

    Google Scholar 

  24. Moon, F.: Chaotic and Fractal Dynamics: Introduction for Applied Scientists and Engineers. John Wiley & Sons, Weinheim (2008)

    Google Scholar 

  25. Jackson, I., Tolujevs, J., Lang, S., Kegenbekov, Z.: Metamodelling of inventory-control simulations based on a multilayer perceptron. Transp. Telecommun. J. 20(3), 251–259 (2019)

    Article  Google Scholar 

  26. Jackson, I., Tolujevs, J.: The discrete-event approach to simulate stochastic multi-product (Q, r) inventory control systems. Inf. Model. Knowl. Bases XXX 312, 32–39 (2019)

    Google Scholar 

  27. GitHub Repository “metainventory”: https://github.com/Jackil1993/metainventory. Accessed 24 Aug 2019

  28. Gulli, A., Pal, S.: Deep Learning with Keras. Packt Publishing Ltd., Birmingham (2017)

    Google Scholar 

  29. GitHub Repository “Nolds”: https://github.com/CSchoel/nolds. Accessed 24 Aug 2019

  30. Sychev, V.: Fractal analysis. FRACTAN 4.4., http://iki.rssi.ru/magbase. Accessed 24 Aug 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jackson, I., Grakovski, A. (2020). Combining LSTM Artificial Recurrent Neural Networks and Fractal Analysis for Inventory Dynamics Prediction. In: Kabashkin, I., Yatskiv, I., Prentkovskis, O. (eds) Reliability and Statistics in Transportation and Communication. RelStat 2019. Lecture Notes in Networks and Systems, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-44610-9_3

Download citation

Publish with us

Policies and ethics