Skip to main content

Two-Level Recursive Identification of Hammerstein System by Interaction Prediction Method

  • Conference paper
  • First Online:
Reliability and Statistics in Transportation and Communication (RelStat 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 117))

  • 788 Accesses

Abstract

The paper concerns identification of Hammerstein system under nonparametric prior knowledge about the static nonlinear characteristic. The identification task is decomposed by the prediction of the hidden interaction signal. The standard kernel approach is modified to cope with the problem of constant offset between the regression function and the static characteristic in Hammerstein system, which was not solved in the previous papers. The idea is based on alternate updating of the offset and the estimate of the impulse response of the linear block. Both levels of the algorithm are given in the recursive version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barenthin, M., Enqvist, M., Wahlberg, B., Hjalmarsson, H.: Gain estimation for Hammerstein systems. IFAC Proc. Vol. 39(1), 784–789 (2006)

    Article  Google Scholar 

  2. Findeisen, W., Bailey, F.N., Brdyś, M., Malinowski, K., Tatjewski, P., Woźniak, A.: Control and Coordination in Hierarchical Systems. Wiley, Chichester-New York (1980)

    MATH  Google Scholar 

  3. Giri, F., Bai, E.W.: Block-Oriented Nonlinear System Identification. Lecture Notes in Control and Information Sciences, vol. 404. Springer, Heidelberg (2010)

    Book  Google Scholar 

  4. Greblicki, W., Pawlak, M.: Nonparametric System Identification. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  5. Hasiewicz, Z., Mzyk, G.: Combined parametric-nonparametric identification of Hammerstein systems. IEEE Trans. Autom. Control 48(8), 1370–1376 (2004)

    Article  MathSciNet  Google Scholar 

  6. Hasiewicz, Z., Mzyk, G.: Hammerstein system identification by non-parametric instrumental variables. Int. J. Control 82(3), 440–455 (2009)

    Article  MathSciNet  Google Scholar 

  7. Mzyk, G.: Nonlinearity recovering in Hammerstein system from short measurement sequence. IEEE Signal Process. Lett. 16(9), 762–765 (2009)

    Article  Google Scholar 

  8. Mzyk, G.: Combined Parametric-Nonparametric Identification of Block-Oriented Systems. Lecture Notes in Control and Information Sciences, vol. 454. Springer, Heidelberg (2014)

    Book  Google Scholar 

  9. Mzyk, G., Wachel, P.: Kernel-based identification of Wiener-Hammerstein system. Automatica 83, 275–281 (2017)

    Article  MathSciNet  Google Scholar 

  10. Pintelon, R., Schoukens, J.: System Identification: A Frequency Domain Approach. Wiley-IEEE Press, Hoboken (2004)

    MATH  Google Scholar 

  11. Vöros, J.: Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans. Autom. Control 48(12), 2203–2206 (2003)

    Article  MathSciNet  Google Scholar 

  12. Wand, M.P., Jones, H.C.: Kernel Smoothing. Chapman and Hall, London (1995)

    Book  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Centre, Poland, grant No. 2016/21/B/ST7/02284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Mzyk .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix A. Calculation of \( {\mathbf{M}}_{{\left( {\varvec{M} + 1} \right) \times \left( {\varvec{M} + 1} \right)}} \) and \( \varvec{L}_{{\varvec{M} + 1}} \)

A1. Recursive computing of matrix \( \varvec{M}_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}} \)

Taking into account definitions of \( P_{N} \) and \( {\mathbf{1}}_{{N \times \left( {M + 1} \right)}} \), after simple algebra we obtain

$$ {\mathbf{M}}_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}} = \frac{1}{2N}\left[ {P_{N}^{T} {\mathbf{1}}_{{N \times \left( {M + 1} \right)}} + \left( {P_{N}^{T} {\mathbf{1}}_{{N \times \left( {M + 1} \right)}} } \right)^{T} } \right] = \left[ {m_{ij} } \right]_{i,j = 0,1, \ldots ,M} $$

where

$$ m_{ij} = \frac{1}{2}\left[ {\underbrace {{\frac{1}{N}\sum\nolimits_{l = 0}^{N - 1} {\hat{R}^{P} \left( {u_{k + l - i} } \right)} }}_{{m_{iN} }} + \underbrace {{\frac{1}{N}\sum\nolimits_{l = 0}^{N - 1} {\hat{R}^{P} \left( {u_{k + l - i} } \right)} }}_{{m_{jN} }}} \right] $$
(12)

and \( m_{ij} = m_{ji} \). Thus, \( m_{ij} \triangleq m_{ij,N} = \frac{1}{2}\left[ {m_{iN} + m_{jN} } \right]. \)

For empirical means in (12) we simply get recursive versions

$$ m_{iN} = \frac{N - 1}{N}\left[ {m_{i,N - 1} + \frac{1}{N - 1}\hat{R}^{P} \left( {u_{{k + \left( {N - 1} \right) - i}} } \right)} \right], $$
(13)
$$ m_{jN} = \frac{N - 1}{N}\left[ {m_{j,N - 1} + \frac{1}{N - 1}\hat{R}^{P} \left( {u_{{k + \left( {N - 1} \right) - j}} } \right)} \right], $$
(14)

which further leads to \( m_{ij,N} = \frac{N - 1}{N}\left[ {m_{ij,N - 1} + \frac{1}{N - 1}\bar{R}_{ij}^{P} } \right], \) where

$$ \bar{R}_{ij}^{P} = \frac{{\hat{R}^{P} \left( {u_{{k + \left( {N - 1} \right) - i}} } \right) + \hat{R}^{P} \left( {u_{{k + \left( {N - 1} \right) - j}} } \right)}}{2} $$

or equivalently \( m_{ij,N} = \left( {\frac{N - 1}{N}} \right)m_{ij,N - 1} + \frac{1}{N}\bar{R}_{ij}^{P} . \) Hence, for the matrix

$$ {\mathbf{M}}_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}} \triangleq {\mathbf{M}}_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}}^{N} = \left[ {m_{ij,N} } \right]_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}} \triangleq {\mathbf{M}}^{N} $$

we get

$$ {\mathbf{M}}^{N} = \frac{N - 1}{N}{\mathbf{M}}^{N - 1} + \frac{1}{N}{\mathbf{R}}^{N - 1} , $$
(15)

where \( {\mathbf{R}}^{N - 1} = \left[ {\bar{R}_{ij}^{P} } \right]_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}} \).

A2. Recursive computing of vector \( L_{M + 1} \)

Since (cf. (5))

$$ L_{M + 1} = \left( {P_{N}^{T} P_{N} } \right)^{ - 1} P_{N}^{T} Y_{N} , $$
(16)

the vector \( L_{M + 1} = L_{M + 1}^{N} \triangleq L^{N} \) is in fact the least squares model of the linear dynamic object with the input \( P_{N} \), parameters \( L \) and the output \( Y_{N} \), i.e. the result of the following optimization task \( Y_{N} - P_{N} L_{2}^{2} \to { \hbox{min} }_{L} \), where \( _{2} \) is the Euclidean norm. Taking into account definition of the matrix \( P_{N} \), and denoting \( G_{N} = \left( {P_{N}^{T} P_{N} } \right)^{ - 1} \), after standard steps we get recursive version of (16)

$$ L^{N} = L^{N - 1} + G_{N} \widehat{{\bar{R}^{P} }}^{T} \left( {\bar{u}_{{k + \left( {N - 1} \right)}} } \right)\left[ {y_{{k + \left( {N - 1} \right)}} - \hat{\bar{R}}^{P} \left( {\bar{u}_{{k + \left( {N - 1} \right)}} } \right)L^{N - 1} } \right], $$
$$ G_{N} = G_{N - 1} - \frac{{G_{N - 1} \widehat{{\bar{R}^{P} }}^{T} \left( {\bar{u}_{{k + \left( {N - 1} \right)}} } \right)\hat{\bar{R}}^{P} \left( {\bar{u}_{{k + \left( {N - 1} \right)}} } \right)G_{N - 1} }}{{1 + \widehat{{\bar{R}^{P} }}^{T} \left( {\bar{u}_{{k + \left( {N - 1} \right)}} } \right)G_{N - 1} \widehat{{\bar{R}^{P} }}^{T} \left( {\bar{u}_{{k + \left( {N - 1} \right)}} } \right)}}. $$
(17)

Consequently,

$$ L^{N} = L^{N - 1} + G_{N} \rho_{N - 1} , $$
(18)

where

$$ \rho_{N - 1} = \widehat{{\bar{R}^{P} }}^{T} \left( {\bar{u}_{{k + \left( {N - 1} \right)}} } \right)\left[ {y_{{k + \left( {N - 1} \right)}} - \hat{\bar{R}}^{P} \left( {\bar{u}_{{k + \left( {N - 1} \right)}} } \right)L^{N - 1} } \right]. $$
(19)

1.2 Appendix B. Calculating of \( {\mathbf{\mathcal{L}}}_{\varvec{N}} \) and \( {\mathbf{\mathcal{M}}}_{\varvec{N}} \)

B1. Recursive computing of the numerator \( {\mathcal{L}}_{N} \)

For \( {\mathcal{L}}_{N} \), owing to (18), we have

$$ {\mathcal{L}}_{N} = L^{{N^{T} }} {\mathbf{M}}^{N} L^{N} = \left[ {L^{N - 1} + G_{N} \rho_{N - 1} } \right]^{T} {\mathbf{M}}^{N} \left[ {L^{N - 1} + G_{N} \rho_{N - 1} } \right] $$
$$ = L^{{N - 1^{T} }} {\mathbf{M}}^{N} L^{N - 1} + \left( {G_{N} \rho_{N - 1} } \right)^{T} {\mathbf{M}}^{N} \left( {G_{N} \rho_{N - 1} } \right) + 2L^{{N - 1^{T} }} {\mathbf{M}}^{N} \left( {G_{N} \rho_{N - 1} } \right), $$

and further, owing to (15), we get

$$ L^{{N - 1^{T} }} {\mathbf{M}}^{N} L^{N - 1} = \frac{N - 1}{N}L^{{N - 1^{T} }} {\mathbf{M}}^{N - 1} L^{N - 1} + \frac{1}{N}L^{{N - 1^{T} }} {\mathbf{R}}^{N - 1} L^{N - 1} , $$

which leads to \( {\mathcal{L}}_{N} = \left( {\frac{N - 1}{N}} \right){\mathcal{L}}_{N - 1} + {\mathcal{K}}_{{\mathcal{L}}}^{N} \), where

$$ {\mathcal{K}}_{{\mathcal{L}}}^{N} = \left( {G_{N} \rho_{N - 1} } \right)^{T} {\mathbf{M}}^{N} \left( {G_{N} \rho_{N - 1} } \right) + 2L^{{N - 1^{T} }} {\mathbf{M}}^{N} \left( {G_{N} \rho_{N - 1} } \right) + \left( {\frac{1}{N}} \right)L^{{N - 1^{T} }} {\mathbf{R}}^{N - 1} L^{N - 1} . $$

B2. Recursive computing of the denominator \( {\mathcal{M}}_{N} \)

For \( {\mathcal{M}}_{N} \) we have \( {\mathcal{M}}_{N} = {\mathcal{M}}_{N - 1} + {\mathcal{K}}_{{\mathcal{M}}}^{N} \), where \( {\mathcal{M}}_{N - 1} = L^{{N - 1^{T} }} 1_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}} L^{N - 1} , \) and \( {\mathcal{K}}_{{\mathcal{M}}}^{N} = \left( {G_{N} \rho_{N - 1} } \right)^{T} 1_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}} \left( {G_{N} \rho_{N - 1} } \right) + 2L^{{N - 1^{T} }} 1_{{\left( {M + 1} \right) \times \left( {M + 1} \right)}} \left( {G_{N} \rho_{N - 1} } \right). \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasiewicz, Z., Mzyk, G. (2020). Two-Level Recursive Identification of Hammerstein System by Interaction Prediction Method. In: Kabashkin, I., Yatskiv, I., Prentkovskis, O. (eds) Reliability and Statistics in Transportation and Communication. RelStat 2019. Lecture Notes in Networks and Systems, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-030-44610-9_13

Download citation

Publish with us

Policies and ethics