Skip to main content

Modulators of Nrf2 Activation During Inflammation

  • Chapter
  • First Online:
Nrf2 and its Modulation in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR,volume 85))

  • 431 Accesses

Abstract

Increased oxidative stress and inflammation are involved in the pathogenesis of several disorders including cancers and neurodegenerative diseases. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway plays an important role in mediating protection against oxidative and xenobiotic stresses. It is well established that the Nrf2 pathway induces the transcription of major phase II and cytoprotective antioxidant genes that may play a beneficial role against cancers and degenerative disorders. However, while activation of Nrf2 can provide some protection against oxidative stress and inflammation, hyperactivation of Nrf2 is associated with multiple diseases and can promote the survival and proliferation of cancer cells. Therefore, modulation of the Nrf2 pathway (inhibitors/activators) may represent a promising therapeutic strategy to counteract oxidative stress and inflammation in cancers and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birch-Machin MA, Bowman A. Oxidative stress and ageing. Br J Dermatol. 2016;175(Suppl 2):26–9.

    Article  CAS  PubMed  Google Scholar 

  2. Martin-Fernandez, B. and R. Gredilla, Mitochondrial oxidative stress and cardiac ageing. Clin Investig Arterioscler, 2018

    Google Scholar 

  3. Marabotti C, et al. Mortality for chronic-degenerative diseases in Tuscany: ecological study comparing neighboring areas with substantial differences in environmental pollution. Int J Occup Med Environ Health. 2017;30(4):641–53.

    PubMed  Google Scholar 

  4. Tsuboi M, et al. Do musculoskeletal degenerative diseases affect mortality and cause of death after 10 years in Japan? J Bone Miner Metab. 2011;29(2):217–23.

    Article  PubMed  Google Scholar 

  5. Calabriso, N., et al., Red grape skin polyphenols blunt matrix metalloproteinase-2 and -9 activity and expression in cell models of vascular inflammation: protective role in degenerative and inflammatory diseases. Molecules. 2016;21(9)

    Google Scholar 

  6. Hossen MS, et al. Beneficial roles of honey polyphenols against some human degenerative diseases: a review. Pharmacol Rep. 2017;69(6):1194–205.

    Article  CAS  PubMed  Google Scholar 

  7. Kwak MK, et al. Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat Res. 2001;480-481:305–15.

    Article  CAS  PubMed  Google Scholar 

  8. Beiter T, et al. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks. Exerc Immunol Rev. 2015;21:42–57.

    PubMed  Google Scholar 

  9. Lee YS, Lee JA, Kaang BK. Regulation of mRNA stability by ARE-binding proteins in synaptic plasticity and memory. Neurobiol Learn Mem. 2015;124:28–33.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, et al. The effect of nuclear factor erythroid 2-related factor/antioxidant response element signalling pathway in the lanthanum chloride-induced impairment of learning and memory in rats. J Neurochem. 2017;140(3):463–75.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao H, et al. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol. 2017;312(2):L155–62.

    Article  PubMed  Google Scholar 

  12. Mann GE. Nrf2-mediated redox signalling in vascular health and disease. Free Radic Biol Med. 2014;75(Suppl 1):S1.

    Article  PubMed  Google Scholar 

  13. Malhotra D, et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 2010;38(17):5718–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stepkowski TM, Kruszewski MK. Molecular cross-talk between the NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free Radic Biol Med. 2011;50(9):1186–95.

    Article  CAS  PubMed  Google Scholar 

  15. Ding H, et al. Nrf2-ARE signaling provides neuroprotection in traumatic brain injury via modulation of the ubiquitin proteasome system. Neurochem Int. 2017;111:32–44.

    Article  CAS  PubMed  Google Scholar 

  16. Sekhar KR, Yan XX, Freeman ML. Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KIAA0132, the human homolog to INrf2. Oncogene. 2002;21(44):6829–34.

    Article  CAS  PubMed  Google Scholar 

  17. Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal. 2010;13(11):1699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alfieri A, et al. Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol. 2011;589(17):4125–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Itoh K, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13(1):76–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kobayashi M, Yamamoto M. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal. 2005;7(3–4):385–94.

    Article  CAS  PubMed  Google Scholar 

  21. Atilano-Roque A, et al. Nrf2 activators as potential modulators of injury in human kidney cells. Toxicol Rep. 2016;3:153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar H, et al. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep. 2014;31(1):109–39.

    Article  CAS  PubMed  Google Scholar 

  23. Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev. 2012;32(4):687–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun H, et al. Recent progress in the development of small molecule Nrf2 modulators: a patent review (2012-2016). Expert Opin Ther Pat. 2017;27(7):763–85.

    Article  CAS  PubMed  Google Scholar 

  25. Maes M, et al. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates--Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012;20(3):127–50.

    Article  CAS  PubMed  Google Scholar 

  26. McMahon M, et al. HDAC inhibitors increase NRF2-signaling in tumour cells and blunt the efficacy of co-adminstered cytotoxic agents. PLoS One. 2014;9(11):e114055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Rushworth SA, Bowles KM, MacEwan DJ. High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors. Cancer Res. 2011;71(5):1999–2009.

    Article  CAS  PubMed  Google Scholar 

  28. Wells G. Peptide and small molecule inhibitors of the Keap1-Nrf2 protein-protein interaction. Biochem Soc Trans. 2015;43(4):674–9.

    Article  CAS  PubMed  Google Scholar 

  29. Zhuang C, et al. Updated research and applications of small molecule inhibitors of Keap1-Nrf2 protein-protein interaction: a review. Curr Med Chem. 2014;21(16):1861–70.

    Article  CAS  PubMed  Google Scholar 

  30. Wakabayashi N, et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A. 2004;101(7):2040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deeks ED. Dimethyl Fumarate: a review in relapsing-remitting MS. Drugs. 2016;76(2):243–54.

    Article  CAS  PubMed  Google Scholar 

  32. Schulze-Topphoff U, et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc Natl Acad Sci U S A. 2016;113(17):4777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morroni F, et al. Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology. 2013;36:63–71.

    Article  CAS  PubMed  Google Scholar 

  34. Patel V, et al. Small molecules and Alzheimer’s disease: misfolding, metabolism and imaging. Curr Alzheimer Res. 2015;12(5):445–61.

    Article  CAS  PubMed  Google Scholar 

  35. Crowley VM, et al. Synthetic oleanane triterpenoids enhance blood brain barrier integrity and improve survival in experimental cerebral malaria. Malar J. 2017;16(1):463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Liby KT, Sporn MB. Synthetic oleanane triterpenoids: multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol Rev. 2012;64(4):972–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cleasby A, et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One. 2014;9(6):e98896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Pergola PE, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327–36.

    Article  CAS  PubMed  Google Scholar 

  39. Nakagami Y, et al. Novel Nrf2 activators from microbial transformation products inhibit blood-retinal barrier permeability in rabbits. Br J Pharmacol. 2015;172(5):1237–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng S, et al. Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators as potential neuroprotective agents. J Med Chem. 2015;58(13):5242–55.

    Article  CAS  PubMed  Google Scholar 

  41. Xi MY, et al. Synthesis and bioevaluation of a series of alpha-pyrone derivatives as potent activators of Nrf2/ARE pathway (part I). Eur J Med Chem. 2013;66:364–71.

    Article  CAS  PubMed  Google Scholar 

  42. Xi MY, et al. 3-Aroylmethylene-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-ones as potent Nrf2/ARE inducers in human Cancer cells and AOM-DSS treated mice. J Med Chem. 2013;56(20):7925–38.

    Article  CAS  PubMed  Google Scholar 

  43. Niitsu Y, et al. Chemoenzymatic synthesis of (2R,3R,4R)-dehydroxymethylepoxyquinomicin (DHMEQ), a new activator of antioxidant transcription factor Nrf2. Org Biomol Chem. 2011;9(12):4635–41.

    Article  CAS  PubMed  Google Scholar 

  44. Vrba J, et al. A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway. J Med Chem. 2013;56(3):856–66.

    Article  CAS  PubMed  Google Scholar 

  45. Le Lamer AC, et al. Protolichesterinic acid derivatives: alpha-methylene-gamma-lactones as potent dual activators of PPAR gamma and Nrf2 transcriptional factors. Bioorg Med Chem Lett. 2014;24(16):3819–22.

    Article  PubMed  CAS  Google Scholar 

  46. Fischedick JT, et al. Structure activity relationship of phenolic diterpenes from Salvia officinalis as activators of the nuclear factor E2-related factor 2 pathway. Bioorg Med Chem. 2013;21(9):2618–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marcotte D, et al. Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg Med Chem. 2013;21(14):4011–9.

    Article  CAS  PubMed  Google Scholar 

  48. Jiang ZY, et al. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. J Med Chem. 2014;57(6):2736–45.

    Article  CAS  PubMed  Google Scholar 

  49. Jain AD, et al. Probing the structural requirements of non-electrophilic naphthalene-based Nrf2 activators. Eur J Med Chem. 2015;103:252–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jnoff E, et al. Binding mode and structure-activity relationships around direct inhibitors of the Nrf2-Keap1 complex. ChemMedChem. 2014;9(4):699–705.

    Article  CAS  PubMed  Google Scholar 

  51. Davies TG, et al. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: nuclear factor Erythroid 2-related factor 2 (KEAP1:NRF2) protein protein interaction with high cell potency identified by fragment-based discovery. J Med Chem. 2016;59(8):3991–4006.

    Article  CAS  PubMed  Google Scholar 

  52. Satoh M, et al. Multiple binding modes of a small molecule to human Keap1 revealed by X-ray crystallography and molecular dynamics simulation. FEBS Open Bio. 2015;5:557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xu LL, et al. Molecular similarity guided optimization of novel Nrf2 activators with 1,2,4-oxadiazole core. Bioorg Med Chem. 2016;24(16):3540–7.

    Article  CAS  PubMed  Google Scholar 

  54. Deshmukh P, et al. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev. 2017;9(1):41–56.

    Article  CAS  PubMed  Google Scholar 

  55. Pandey P, et al. The see-saw of Keap1-Nrf2 pathway in cancer. Crit Rev Oncol Hematol. 2017;116:89–98.

    Article  PubMed  Google Scholar 

  56. Schmoll D, Engel CK, Glombik H. The Keap1-Nrf2 protein-protein interaction: a suitable target for small molecules. Drug Discov Today Technol. 2017;24:11–7.

    Article  PubMed  Google Scholar 

  57. Taguchi K, Yamamoto M. The KEAP1-NRF2 system in Cancer. Front Oncol. 2017;7:85.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Goode A, et al. ALS-FTLD associated mutations of SQSTM1 impact on Keap1-Nrf2 signalling. Mol Cell Neurosci. 2016;76:52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hast BE, et al. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res. 2014;74(3):808–17.

    Article  CAS  PubMed  Google Scholar 

  60. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34(4):176–88.

    Article  CAS  PubMed  Google Scholar 

  61. Jeong Y, et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 2017;7(1):86–101.

    Article  CAS  PubMed  Google Scholar 

  62. Konstantinopoulos PA, et al. Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res. 2011;71(15):5081–9.

    Article  CAS  PubMed  Google Scholar 

  63. Li QK, et al. KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. J Hum Genet. 2011;56(3):230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shibata T, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci U S A. 2008;105(36):13568–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wong TF, et al. Association of keap1 and nrf2 genetic mutations and polymorphisms with endometrioid endometrial adenocarcinoma survival. Int J Gynecol Cancer. 2011;21(8):1428–35.

    Article  PubMed  Google Scholar 

  66. Badeloe S, et al. Hereditary multiple cutaneous leiomyoma resulting from novel mutations in the fumarate hydratase gene. J Dermatol Sci. 2008;51(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  67. Badeloe S, et al. Diffuse and segmental variants of cutaneous leiomyomatosis: novel mutations in the fumarate hydratase gene and review of the literature. Exp Dermatol. 2006;15(9):735–41.

    Article  CAS  PubMed  Google Scholar 

  68. Bayley JP, Launonen V, Tomlinson IP. The FH mutation database: an online database of fumarate hydratase mutations involved in the MCUL (HLRCC) tumor syndrome and congenital fumarase deficiency. BMC Med Genet. 2008;9:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Carvajal-Carmona LG, et al. Adult leydig cell tumors of the testis caused by germline fumarate hydratase mutations. J Clin Endocrinol Metab. 2006;91(8):3071–5.

    Article  CAS  PubMed  Google Scholar 

  70. Guo D, et al. A possible gene silencing mechanism: hypermethylation of the Keap1 promoter abrogates binding of the transcription factor Sp1 in lung cancer cells. Biochem Biophys Res Commun. 2012;428(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  71. Bollong MJ, et al. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chem Biol. 2015;10(10):2193–8.

    Article  CAS  PubMed  Google Scholar 

  72. Lee S, et al. An effective strategy for increasing the radiosensitivity of human lung Cancer cells by blocking Nrf2-dependent antioxidant responses. Free Radic Biol Med. 2012;53(4):807–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NHMRC Capacity Building Grant to Prof. Perminder Sachdev. Nady Braidy is the recipient of an Alzheimer’s Australia Viertel Foundation Postdoctoral Research Fellowship at the University of New South Wales. We sincerely thank the Rebecca Cooper Medical Research Foundation for ongoing financial support of our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nady Braidy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braidy, N. (2020). Modulators of Nrf2 Activation During Inflammation. In: Deng, H. (eds) Nrf2 and its Modulation in Inflammation. Progress in Inflammation Research, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-030-44599-7_8

Download citation

Publish with us

Policies and ethics