Skip to main content

Nrf2 in the Regulation of Endothelial Cell Homeostasis During Inflammation

  • Chapter
  • First Online:
Nrf2 and its Modulation in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR,volume 85))

  • 443 Accesses

Abstract

Vascular endothelial cells line the inner surface of blood vessels, functioning as the selective barrier between the blood and internal organs. Inflammation in endothelial cells impairs vascular functions, such as barrier function and the control of blood pressure, and enhances the recruitment of leukocytes, resulting in cardiovascular disease or cerebrovascular disease. Vascular inflammation is often initiated by enhanced generation of reactive oxygen species (ROS) and provokes additional oxidative stress. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) coordinately activates the expression of antioxidant and xenobiotic detoxifying genes, thereby protecting the vascular cells from oxidative stress. A number of studies have investigated the role of Nrf2 in endothelial cells and revealed that endothelial Nrf2 is activated not only by well-known electrophilic Nrf2 inducers such as sulforaphane in broccoli but also by mechanical shear stress and by circulating insulin-like growth factor (IGF)-1. Nrf2 is activated in the endothelial cells of straight segments of vessels that are exposed to unidirectional laminar flow (L-flow), thus contributing to the atheroprotective property of these areas. In contrast, Nrf2 activation is defective and unactivated in cells in branched segments that are exposed to disturbed flow; these areas are atheroprone. We review the mechanisms for endothelial Nrf2 activation via physiological stimuli and its effects on vascular biology, and we discuss the roles of Nrf2 target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Libby P. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135–43. https://doi.org/10.1161/hc0902.104353.

    Article  CAS  PubMed  Google Scholar 

  2. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69. https://doi.org/10.7150/ijbs.7502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gimbrone MA Jr, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36. https://doi.org/10.1161/CIRCRESAHA.115.306301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB. Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol. 2000;279(3):L419–22. https://doi.org/10.1152/ajplung.2000.279.3.L419.

  5. Rees DD, Palmer RM, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989;86(9):3375–8.

    Article  CAS  Google Scholar 

  6. Gardiner SM, Compton AM, Bennett T, Palmer RM, Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension. 1990;15(5):486–92.

    Google Scholar 

  7. Masaki T. Historical review: Endothelin. Trends Pharmacol Sci. 2004;25(4):219–24. https://doi.org/10.1016/j.tips.2004.02.008.

    Article  CAS  PubMed  Google Scholar 

  8. Moncada S, Higgs EA, Hodson HF, Knowles RG, Lopez-Jaramillo P, McCall T, Palmer RMJ, Radomski MW, Rees DD, Schulz R. The l-arginine: nitric oxide pathway. J Cardiovasc Pharmacol. 1991;17(Suppl.3):S1–9.

    Article  CAS  Google Scholar 

  9. Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab. 2009;20(6):295–302. https://doi.org/10.1016/j.tem.2009.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015;15:130. https://doi.org/10.1186/s12872-015-0124-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weitz JI. Heparan sulfate: antithrombotic or not? J Clin Invest. 2003;111(7):952–4. https://doi.org/10.1172/JCI200318234.

  12. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev. 2004;56(4):549–80. https://doi.org/10.1124/pr.56.4.3.

    Article  CAS  PubMed  Google Scholar 

  13. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991;88(11):4651–5.

    Google Scholar 

  14. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90. https://doi.org/10.1038/35008121.

  15. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengellér Z, Szabó C, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112(7):1049–57. https://doi.org/10.1172/jci18127.

  16. Reusch JE. Diabetes, microvascular complications, and cardiovascular complications: what is it about glucose? J Clin Invest. 2003;112(7):986–8. https://doi.org/10.1172/jci200319902.

  17. Satta S, Mahmoud AM, Wilkinson FL, Yvonne Alexander M, White SJ. The role of Nrf2 in cardiovascular function and disease. Oxidative Med Cell Longev. 2017;2017:9237263. https://doi.org/10.1155/2017/9237263.

    Article  CAS  Google Scholar 

  18. Förstermann U. Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem. 2006;387(12):1521–33. https://doi.org/10.1515/BC.2006.190.

    Article  CAS  PubMed  Google Scholar 

  19. Pierini D, Bryan NS. Nitric oxide availability as a marker of oxidative stress. Methods Mol Biol. 2015;1208:63–71. https://doi.org/10.1007/978-1-4939-1441-8_5.

  20. Chistiakov DA, Orekhov AN, Bobryshev YV. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol. 2017;219(2):382–408. https://doi.org/10.1111/apha.12725.

    Article  CAS  Google Scholar 

  21. Resnick N, Yahav H, Shay-Salit A, Shushy M, Schubert S, Zilberman LCM, et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol. 2003;81(3):177–99. https://doi.org/10.1016/s0079-6107(02)00052-4.

    Article  PubMed  Google Scholar 

  22. Barakat A, Lieu, D. Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress. Cell Biochem Biophys. 2003;38(3):323–43. https://doi.org/10.1385/cbb:38:3:323.

  23. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87. https://doi.org/10.1152/physrev.00047.2009.

    Article  PubMed  Google Scholar 

  24. Napoli C, Williams-Ignarro S, De Nigris F, Lerman LO, Rossi L, Guarino C, Mansueto G, Di Tuoro F, Pignalosa O, De Rosa G, Sica V, Ignarro LJ. Long-term combined beneficial effects of physical training and metabolic treatment on atherosclerosis in hypercholesterolemic mice. Proc Natl Acad Sci U S A. 2004;101(52):18262. https://doi.org/10.1073/pnas.0409060101.

  25. Topper JN, Cai J, Falb D, Gimbrone MA Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A. 1996;93(19):10417–22. https://doi.org/10.1073/pnas.93.19.10417.

  26. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med. 2004;199(10):1305–15. https://doi.org/10.1084/jem.20031132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang N, Miao H, Li YS, Zhang P, Haga JH, Hu Y, et al. Shear stress regulation of Kruppel-like factor 2 expression is flow pattern-specific. Biochem Biophys Res Commun. 2006;341(4):1244–51. https://doi.org/10.1016/j.bbrc.2006.01.089.

    Article  CAS  PubMed  Google Scholar 

  28. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13(1):76–86. https://doi.org/10.1101/gad.13.1.76.

  29. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells. 2003;8(4):379–91. https://doi.org/10.1046/j.1365-2443.2003.00640.x.

  30. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24(16):7130–9. https://doi.org/10.1128/MCB.24.16.7130-7139.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, et al. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Arch Biochem Biophys. 2005;433(2):342–50. https://doi.org/10.1016/j.abb.2004.10.012.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang DD, Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent Ubiquitination of Nrf2 and for stabilization of Nrf2 by Chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23(22):8137–51. https://doi.org/10.1128/mcb.23.22.8137-8151.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H, et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol. 2008;28(8):2758–70. https://doi.org/10.1128/MCB.01704-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, et al. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol. 2009;29(2):493–502. https://doi.org/10.1128/MCB.01080-08.

    Article  CAS  PubMed  Google Scholar 

  35. Takaya K, Suzuki T, Motohashi H, Onodera K, Satomi S, Kensler TW, et al. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic Biol Med. 2012;53(4):817–27. https://doi.org/10.1016/j.freeradbiomed.2012.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, et al. Characterizations of three major cysteine sensors of Keap1 in stress response. Mol Cell Biol. 2015;36(2):271–84. https://doi.org/10.1128/MCB.00868-15.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki T, Yamamoto M. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J Biol Chem. 2017;292(41):16817-24. https://doi.org/10.1074/jbc.R117.800169.

  38. Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 2011;31(6):1121–33. https://doi.org/10.1128/MCB.01204-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene. 2013;32(32):3765–81. https://doi.org/10.1038/onc.2012.388.

    Article  CAS  PubMed  Google Scholar 

  40. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22(1):66–79. https://doi.org/10.1016/j.ccr.2012.05.016.

    Article  CAS  PubMed  Google Scholar 

  41. Taguchi K, Hirano I, Itoh T, Tanaka M, Miyajima A, Suzuki A, et al. Nrf2 enhances cholangiocyte expansion in Pten-deficient livers. Mol Cell Biol. 2014;34(5):900–13. https://doi.org/10.1128/MCB.01384-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.

    Google Scholar 

  43. Itoh K, Tong KI, Yamamoto M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med. 2004;36(10):1208–13. https://doi.org/10.1016/j.freeradbiomed.2004.02.075.

    Article  CAS  PubMed  Google Scholar 

  44. Katsuoka F, Motohashi H, Ishii T, Aburatani H, Engel JD, Yamamoto M. Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes. Mol Cell Biol. 2005;25(18):8044–51. https://doi.org/10.1128/MCB.25.18.8044-8051.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamazaki H, Katsuoka F, Motohashi H, Engel JD, Yamamoto M. Embryonic lethality and fetal liver apoptosis in mice lacking all three small Maf proteins. Mol Cell Biol. 2012;32(4):808–16. https://doi.org/10.1128/MCB.06543-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suzuki T, Motohashi H, Yamamoto M. Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci. 2013;34(6):340–6. https://doi.org/10.1016/j.tips.2013.04.005.

    Article  CAS  PubMed  Google Scholar 

  47. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 2006;116(4):984–95. https://doi.org/10.1172/JCI25790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046.

    Article  CAS  PubMed  Google Scholar 

  49. Taguchi K, Maher JM, Suzuki T, Kawatani Y, Motohashi H, Yamamoto M. Genetic analysis of cytoprotective functions supported by graded expression of Keap1. Mol Cell Biol. 2010;30(12):3016–26. https://doi.org/10.1128/MCB.01591-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ohkoshi A, Suzuki T, Ono M, Kobayashi T, Yamamoto M. Roles of Keap1-Nrf2 system in upper aerodigestive tract carcinogenesis. Cancer Prev Res. 2013;6(2):149–59. https://doi.org/10.1158/1940-6207.CAPR-12-0401-T.

    Article  CAS  Google Scholar 

  51. Miyazaki Y, Shimizu A, Pastan I, Taguchi K, Naganuma E, Suzuki T, et al. Keap1 inhibition attenuates glomerulosclerosis. Nephrol Dial Transplant. 2014;29(4):783–91. https://doi.org/10.1093/ndt/gfu002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Satoh H, Moriguchi T, Saigusa D, Baird L, Yu L, Rokutan H, et al. NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth. Cancer Res. 2016;76(10):3088–96. https://doi.org/10.1158/0008-5472.CAN-15-1584.

    Article  CAS  PubMed  Google Scholar 

  53. Keleku-Lukwete N, Suzuki M, Otsuki A, Tsuchida K, Katayama S, Hayashi M, et al. Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation. Proc Natl Acad Sci U S A. 2015;112(39):12169–74. https://doi.org/10.1073/pnas.1509158112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamazaki H, Tanji K, Wakabayashi K, Matsuura S, Itoh K. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases. Pathol Int. 2015;65(5):210–9. https://doi.org/10.1111/pin.12261.

    Article  CAS  PubMed  Google Scholar 

  55. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624. https://doi.org/10.1038/ncomms11624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK, et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem. 2003;278(2):703–11. https://doi.org/10.1074/jbc.M203161200.

    Article  CAS  PubMed  Google Scholar 

  57. Warabi E, Wada Y, Kajiwara H, Kobayashi M, Koshiba N, Hisada T, et al. Effect on endothelial cell gene expression of shear stress, oxygen concentration, and low-density lipoprotein as studied by a novel flow cell culture system. Free Radic Biol Med. 2004;37(5):682–94. https://doi.org/10.1016/j.freeradbiomed.2004.05.020.

    Article  CAS  PubMed  Google Scholar 

  58. Hosoya T, Maruyama A, Kang MI, Kawatani Y, Shibata T, Uchida K, et al. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J Biol Chem. 2005;280(29):27244–50. https://doi.org/10.1074/jbc.M502551200.

    Article  CAS  PubMed  Google Scholar 

  59. Fledderus JO, Boon RA, Volger OL, Hurttila H, Yla-Herttuala S, Pannekoek H, et al. KLF2 primes the antioxidant transcription factor Nrf2 for activation in endothelial cells. Arterioscler Thromb Vasc Biol. 2008;28(7):1339–46. https://doi.org/10.1161/ATVBAHA.108.165811.

    Article  CAS  PubMed  Google Scholar 

  60. Hsieh CY, Hsiao HY, Wu WY, Liu CA, Tsai YC, Chao YJ, et al. Regulation of shear-induced nuclear translocation of the Nrf2 transcription factor in endothelial cells. J Biomed Sci. 2009;16:12. https://doi.org/10.1186/1423-0127-16-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goettsch C, Goettsch W, Brux M, Haschke C, Brunssen C, Muller G, et al. Arterial flow reduces oxidative stress via an antioxidant response element and Oct-1 binding site within the NADPH oxidase 4 promoter in endothelial cells. Basic Res Cardiol. 2011;106(4):551–61. https://doi.org/10.1007/s00395-011-0170-3.

    Article  CAS  PubMed  Google Scholar 

  62. Dai G, Vaughn S, Zhang Y, Wang ET, Garcia-Cardena G, Gimbrone MA Jr. Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ Res. 2007;101(7):723–33. https://doi.org/10.1161/CIRCRESAHA.107.152942.

    Article  CAS  PubMed  Google Scholar 

  63. Zakkar M, Van der Heiden K, Luong le A, Chaudhury H, Cuhlmann S, Hamdulay SS et al. Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol 2009;29(11):1851–7. https://doi.org/10.1161/ATVBAHA.109.193375.

  64. Pearce MJ, McIntyre TM, Prescott SM, Zimmerman GA, Whatley RE. Shear stress activates cytosolic phospholipase A2 (cPLA2) and MAP kinase in human endothelial cells. Biochem Biophys Res Commun. 1996;218(2):500–4. https://doi.org/10.1006/bbrc.1996.0089.

  65. Taba Y, Sasaguri T, Miyagi M, Abumiya T, Miwa Y, Ikeda T, Mitsumata M. Fluid shear stress induces lipocalin-type prostaglandin D(2) synthase expression in vascular endothelial cells. Circ Res. 2000;86(9):967–73. https://doi.org/10.1161/01.res.86.9.967.

  66. Inoue H. Transcriptional and posttranscriptional regulation of Cyclooxygenase-2 expression by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2002;22(9):1415–20. https://doi.org/10.1161/01.atv.0000028816.13582.13.

    Article  CAS  PubMed  Google Scholar 

  67. McMahon M, Lamont DJ, Beattie KA, Hayes JD. Keap1 perceives stress via three sensors for the endogenous signaling molecules nitric oxide, zinc, and alkenals. Proc Natl Acad Sci U S A. 2010;107(44):18838–43. https://doi.org/10.1073/pnas.1007387107.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H, et al. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem. 2011;286(16):14019–27. https://doi.org/10.1074/jbc.M110.190710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002;277(45):42769–74. https://doi.org/10.1074/jbc.M206911200.

    Article  CAS  PubMed  Google Scholar 

  70. Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem. 2003;278(45):44675–82. https://doi.org/10.1074/jbc.M307633200.

    Article  CAS  PubMed  Google Scholar 

  71. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest. 2006;116(1):49–58. https://doi.org/10.1172/JCI24787.

    Article  CAS  PubMed  Google Scholar 

  72. Woo CH, Shishido T, McClain C, Lim JH, Li JD, Yang J, et al. Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced anti-inflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res. 2008;102(5):538–45. https://doi.org/10.1161/CIRCRESAHA.107.156877.

    Article  CAS  PubMed  Google Scholar 

  73. Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D, Schmolke M, et al. Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4). J Biol Chem. 2010;285(34):26199–210. https://doi.org/10.1074/jbc.M110.103127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Clark PR, Jensen TJ, Kluger MS, Morelock M, Hanidu A, Qi Z, et al. MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells. Microcirculation. 2011;18(2):102–17. https://doi.org/10.1111/j.1549-8719.2010.00071.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim M, Kim S, Lim JH, Lee C, Choi HC, Woo CH. Laminar flow activation of ERK5 protein in vascular endothelium leads to atheroprotective effect via NF-E2-related factor 2 (Nrf2) activation. J Biol Chem. 2012;287(48):40722–31. https://doi.org/10.1074/jbc.M112.381509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hempel SL, Buettner GR, O’Malley YQ, Wessels DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med. 1999;27(1–2):146–59.

    Google Scholar 

  77. Warabi E, Takabe W, Minami T, Inoue K, Itoh K, Yamamoto M, et al. Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: role of reactive oxygen/nitrogen species. Free Radic Biol Med. 2007;42(2):260–9. https://doi.org/10.1016/j.freeradbiomed.2006.10.043.

    Article  CAS  PubMed  Google Scholar 

  78. Jones CI 3rd, Zhu H, Martin SF, Han Z, Li Y, Alevriadou BR. Regulation of antioxidants and phase 2 enzymes by shear-induced reactive oxygen species in endothelial cells. Ann Biomed Eng. 2007;35(5):683–93. https://doi.org/10.1007/s10439-007-9279-9.

    Article  PubMed  Google Scholar 

  79. Hwang J, Saha A, Boo YC, Sorescu GP, McNally JS, Holland SM, et al. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J Biol Chem. 2003;278(47):47291–8. https://doi.org/10.1074/jbc.M305150200.

    Article  CAS  PubMed  Google Scholar 

  80. McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S, Jo H, Harrison DG. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol. 2003;285(6):H2290–7. https://doi.org/10.1152/ajpheart.00515.2003.

  81. Lee DY, Lee CI, Lin TE, Lim SH, Zhou J, Tseng YC, et al. Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci U S A. 2012;109(6):1967–72. https://doi.org/10.1073/pnas.1121214109.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ungvari Z, Bailey-Downs L, Gautam T, Jimenez R, Losonczy G, Zhang C, et al. Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia. Am J Physiol Heart Circ Physiol. 2011;300(4):H1133–40. https://doi.org/10.1152/ajpheart.00402.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Afonyushkin T, Oskolkova OV, Philippova M, Resink TJ, Erne P, Binder BR, et al. Oxidized phospholipids regulate expression of ATF4 and VEGF in endothelial cells via NRF2-dependent mechanism: novel point of convergence between electrophilic and unfolded protein stress pathways. Arterioscler Thromb Vasc Biol. 2010;30(5):1007–13. https://doi.org/10.1161/ATVBAHA.110.204354.

    Article  CAS  PubMed  Google Scholar 

  84. Ungvari Z, Bailey-Downs L, Gautam T, Sosnowska D, Wang M, Monticone RE, et al. Age-associated vascular oxidative stress, Nrf2 dysfunction, and NF-{kappa}B activation in the nonhuman primate Macaca mulatta. J Gerontol A Biol Sci Med Sci. 2011;66(8):866–75. https://doi.org/10.1093/gerona/glr092.

    Article  CAS  PubMed  Google Scholar 

  85. Bailey-Downs LC, Mitschelen M, Sosnowska D, Toth P, Pinto JT, Ballabh P, et al. Liver-specific knockdown of IGF-1 decreases vascular oxidative stress resistance by impairing the Nrf2-dependent antioxidant response: a novel model of vascular aging. J Gerontol A Biol Sci Med Sci. 2012;67(4):313–29. https://doi.org/10.1093/gerona/glr164.

    Article  CAS  PubMed  Google Scholar 

  86. Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24(8):449–55. https://doi.org/10.1016/s1471-4906(03)00181-9.

    Article  CAS  PubMed  Google Scholar 

  87. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968;61(2):748–55.

    Google Scholar 

  88. Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86(2):583–650. https://doi.org/10.1152/physrev.00011.2005.

    Article  CAS  PubMed  Google Scholar 

  89. Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992;267(25):18148–53.

    Google Scholar 

  90. Kwak JY, Takeshige K, Cheung BS, Minakami S. Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. Biochim Biophys Acta. 1991;1076(3):369–73.

    Google Scholar 

  91. Jansen T, Hortmann M, Oelze M, Opitz B, Steven S, Schell R, et al. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for direct and indirect antioxidant actions of bilirubin. J Mol Cell Cardiol. 2010;49(2):186–95. https://doi.org/10.1016/j.yjmcc.2010.04.011.

    Article  CAS  PubMed  Google Scholar 

  92. Fujii M, Inoguchi T, Sasaki S, Maeda Y, Zheng J, Kobayashi K, et al. Bilirubin and biliverdin protect rodents against diabetic nephropathy by downregulating NAD(P)H oxidase. Kidney Int. 2010;78(9):905–19. https://doi.org/10.1038/ki.2010.265.

    Article  CAS  PubMed  Google Scholar 

  93. Heiss EH, Schachner D, Werner ER, Dirsch VM. Active NF-E2-related factor (Nrf2) contributes to keep endothelial NO synthase (eNOS) in the coupled state: role of reactive oxygen species (ROS), eNOS, and heme oxygenase (HO-1) levels. J Biol Chem. 2009;284(46):31579–86. https://doi.org/10.1074/jbc.M109.009175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999;103(1):129–35. https://doi.org/10.1172/JCI4165.

  95. Soares MP, Seldon MP, Gregoire IP, Vassilevskaia T, Berberat PO, Yu J, et al. Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation. J Immunol. 2004;172(6):3553–63. https://doi.org/10.4049/jimmunol.172.6.3553.

    Article  CAS  PubMed  Google Scholar 

  96. Motterlini R, Foresti R, Bassi R, Green CJ. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med. 2000;28(8):1303–12.

    Google Scholar 

  97. Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL, Clinton Webb R, Lee ME, Nabel GJ, Nabel EG. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med. 2001;693–8(7):6. https://doi.org/10.1038/89068.

  98. Hayashi S, Takamiya R, Yamaguchi T, Matsumoto K, Tojo SJ, Tamatani T, Kitajima M, Makino N, Ishimura Y, Suematsu M. Induction of heme oxygenase-1 suppresses venular leukocyte adhesion elicited by oxidative stress: role of bilirubin generated by the enzyme. Circ Res. 1999;85(8):663–71.

    Google Scholar 

  99. Zhang HP, Zheng FL, Zhao JH, Guo DX, Chen XL. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1. Arch Med Res. 2013;44(1):13–20. https://doi.org/10.1016/j.arcmed.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  100. Xue M, Qian Q, Adaikalakoteswari A, Rabbani N, Babaei-Jadidi R, Thornalley PJ. Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes. 2008;57(10):2809–17. https://doi.org/10.2337/db06-1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cheng X, Chapple SJ, Patel B, Puszyk W, Sugden D, Yin X, Mayr M, Siow RC, Mann GE. Gestational diabetes mellitus impairs Nrf2-mediated adaptive antioxidant defenses and redox signaling in fetal endothelial cells in utero. Diabetes. 2013;62(12):4088–97. https://doi.org/10.2337/db13-0169.

  102. Sobrevia L, Cesare P, Yudilevich DL, Mann GE. Diabetes-induced activation of system y+ and nitric oxide synthase in human endothelial cells: association with membrane hyperpolarization. J Physiol. 1995;489(Pt 1):183–92.

    Google Scholar 

  103. Pereira A, Fernandes R, Crisostomo J, Seica RM, Sena CM. The Sulforaphane and pyridoxamine supplementation normalize endothelial dysfunction associated with type 2 diabetes. Sci Rep. 2017;7(1):14357. https://doi.org/10.1038/s41598-017-14733-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, Tang Y, Fahey JW, Derry JMJ, Wollheim CB, Wierup N, Haymond MW, Friend SH, Mulder H, Rosengren AH. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med. 2017;9(394):eaah4477. https://doi.org/10.1126/scitranslmed.aah4477.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Itoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamazaki, H., Itoh, K. (2020). Nrf2 in the Regulation of Endothelial Cell Homeostasis During Inflammation. In: Deng, H. (eds) Nrf2 and its Modulation in Inflammation. Progress in Inflammation Research, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-030-44599-7_4

Download citation

Publish with us

Policies and ethics