Skip to main content

Toll-Like Receptors (TLRs) in the Tumor Microenvironment (TME): A Dragon-Like Weapon in a Non-fantasy Game of Thrones

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1263))

Abstract

Toll-like receptors (TLRs) in the tumor microenvironment (TME) are expressed not only in innate and adaptive immune cells but also in stromal cells such as fibroblasts, endothelial cells (EC), and tumor cells. The role of TLR signaling in the TME is complex and controversial due to their wide expression within the TME. Moreover, TLR signaling may culminate in different outcomes depending on the type of tumor, the implicated TLR, the type of TLR ligands, and, most importantly, the main type of cell(s) that are targeted by TLR ligands. Understanding to what extent these complex TLR signals impact on tumor progression merits further investigation, as it can help improve existing anti-cancer treatments or unravel new ones. In most cases, TLR signaling in tumor cells and in immune cells is associated with pro-tumoral and anti-tumoral effects, respectively. A better understanding of the relationship between TLRs and the TME, especially in humans, is required to design better anti-cancer therapies, considering that most current TLR-involved treatments were disappointing in clinical trials.

In this chapter, we will discuss the impact of TLR signaling on the hallmarks of cancer, by highlighting their effects in tumor, immune, and stromal cells within the TME. Furthermore, we will discuss how the understanding of the role of TLRs can pave the way to develop new anti-cancer treatments and even predict clinical outcome and chemotherapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Werb Z, Lu P (2015) The role of stroma in tumor development. Cancer J 21:250–253

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32(19–20):1267–1284

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  4. Sato Y, Goto Y, Narita N, Hoon DS (2009) Cancer cells expressing Toll-like receptors and the tumor microenvironment. Cancer Microenviron 2(Suppl 1):205–214

    PubMed  PubMed Central  Google Scholar 

  5. Basith S, Manavalan B, Yoo TH et al (2012) Roles of Toll-like receptors in cancer: a double-edged sword for defense and offense. Arch Pharm Res 35(8):1297–1316

    CAS  PubMed  Google Scholar 

  6. Gribar SC, Richardson WM, Sodhi CP et al (2008) No longer an innocent bystander: epithelial Toll-like receptor signaling in the development of mucosal inflammation. Mol Med 14:645–659

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang L, Xu H, Peng G (2018) TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cell Mol Immunol 15:428–437. https://doi.org/10.1038/cmi.2018.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Manavalan B, Basith S, Choi S (2011) Similar structures but different roles – an updated perspective on TLR structures. Front Physiol 2:41

    PubMed  PubMed Central  Google Scholar 

  9. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373. https://doi.org/10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  10. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 9:361–368

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pelka K, Bertheloot D, Reimer E, Phulphagar K, Schmidt SV, Christ A, Stahl R, Watson N, Miyake K, Hacohen N, Haas A, Brinkmann MM, Marshak-Rothstein A, Meissner F, Latz E (2018) The chaperone UNC93B1 regulates Toll-like receptor stability independently of endosomal TLR transport. Immunity 48:911–922 e7

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Maschalidi S, Nunes-Hasler P, Nascimento CR, Sallent I, Lannoy V, Garfa-Traore M et al (2017) UNC93B1 interacts with the calcium sensor STIM1 for efficient antigen cross-presentation in dendritic cells. Nat Commun 8:1640. https://doi.org/10.1038/s41467-017-01601-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ewald SE, Engel A, Lee J, Wang M, Bogyo M, Barton GM (2011) Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med 208:643–651. https://doi.org/10.1084/jem.20100682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Garcia-Cattaneo A, Gobert F-X, Muller M, Toscano F, Flores M, Lescure A et al (2012) Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling. Proc Natl Acad Sci U S A 109:9053–9058. https://doi.org/10.1073/pnas.1115091109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. https://doi.org/10.1128/CMR.00046-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellerman JE, Brown CK, de Vera M et al (2007) Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13:2836–2848

    CAS  PubMed  Google Scholar 

  17. Nagano T, Otoshi T, Hazama D, Kiriu T, Umezawa K, Katsurada N, Nishimura Y (2019) Novel cancer therapy targeting microbiome. OncoTargets and Therapy 12:3619–3624

    Google Scholar 

  18. Das N, Dewan V, Grace PM, Gunn RJ, Tamura R, Tzarum N, … Yin H (2016) HMGB1 activates proinflammatory signaling via TLR5 leading to allodynia. Cell Rep 17(4):1128–1140

    Google Scholar 

  19. Henrick BM, Yao XD, Zahoor MA, Abimiku A, Osawe S, Rosenthal KL (2019) TLR10 senses HIV-1 proteins and significantly enhances HIV-1 infection. Front Immunol 10(MAR)

    Google Scholar 

  20. Mao Q, Jiang F, Yin R, Wang J, Xia W, Dong G et al (2018) Interplay between the lung microbiome and lung cancer. Cancer Lett 415:40–48. https://doi.org/10.1016/J.CANLET.2017.11.036

    Article  CAS  PubMed  Google Scholar 

  21. Schirbel A, Kessler S, Rieder F, West G, Rebert N, Asosingh K et al (2013) Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology 144:613–623

    CAS  PubMed  Google Scholar 

  22. Peuker K, Muff S, Wang J et al (2016) Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med 22:506–515

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Dapito DH, Mencin A, Gwak GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A, Bataller R, Lefkowitch JH, Bower M, Friedman R, Sartor RB, Rabadan R, Schwabe RF (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21:504–516

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Loo TM, Kamachi F, Watanabe Y et al (2017) Gut microbiota promotes obesity-associated liver cancer through PGE. Cancer Discov 7(5):522–538

    CAS  PubMed  Google Scholar 

  25. Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B et al (2019) Commensal microbiota promote lung cancer development via γδ T cells. Cell 176(5):998–1013.e16. https://doi.org/10.1016/j.cell.2018.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Land WG (2015) The role of damage-associated molecular patterns in human diseases: part I – promoting inflammation and immunity. Sultan Qaboos Univ Med J 15:e9–e21

    PubMed  PubMed Central  Google Scholar 

  27. Srikrishna G, Freeze HH (2009) Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11:615–628

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498

    CAS  PubMed  PubMed Central  Google Scholar 

  29. He S-J, Cheng J, Feng X, Yu Y, Tian L (2017) The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget 8:64534–64550

    PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Yan W, Tohme S, Chen M, Fu Y, Tian D, Lotze M, Tang D, Tsung A (2015) Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol 63(1):114–121

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang S, Xu L, Yang T, Wang F (2014) High-mobility group box-1 and its role in angiogenesis. J Leukoc Biol 95:563–574

    PubMed  Google Scholar 

  32. Parker KH, Sinha P, Horn LA, Clements VK, Yang H, Li J, Tracey KJ, Ostrand-Rosenberg S (2014) HMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cells. Cancer Res 74:5723–5733

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Parker KH, Horn LA, Ostrand-Rosenberg S (2016) High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy. J Leukoc Biol 100:1–8

    Google Scholar 

  34. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J, Segal DM et al (2008) Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–381

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan Y, Yang L, Wei Q, Ding Y, Tang Z, Tan P, Lin T, Guo D, Qiu S (2019) Toll-like receptor 10 (TLR10) exhibits suppressive effects on inflammation of prostate epithelial cells. Asian J Androl 21:393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ridnour LA, Cheng RYS, Switzer CH, Heinecke JL, Ambs S, Glynn S, … Wink DA (2013, March 15). Molecular pathways: Toll-like receptors in the tumor microenvironment-poor prognosis or new therapeutic opportunity. Clin Cancer Res 19:1340–1346

    Google Scholar 

  37. Basith S, Manavalan B, Lee G, Kim SG, Choi S (2011) Toll-like receptor modulators: a patent review (2006–2010). Expert Opin Ther Pat 21:927–944

    CAS  PubMed  Google Scholar 

  38. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258

    CAS  PubMed  Google Scholar 

  39. O’Neill LAJ, Golenbock D, Bowie AG (2013) The history of Toll-like receptors — redefining innate immunity. Nat Rev Immunol 13:453–460. https://doi.org/10.1038/nri3446

    Article  CAS  PubMed  Google Scholar 

  40. Belinda WC, Wei WX, Hanh BTH, Lei LX, Bow H, Ling DJ (2008) SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human. Mol Immunol 45(6):1732–1742. https://doi.org/10.1016/j.molimm.2007.09.030

    Article  CAS  PubMed  Google Scholar 

  41. Butcher SK, O’Carroll CE, Wells CA, Carmody RJ (2018) Toll-like receptors drive specific patterns of tolerance and training on restimulation of macrophages. Front Immunol 9:933. https://doi.org/10.3389/fimmu.2018.00933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gu J, Liu Y, Xie B, Ye P, Huang J, Lu Z (2018) Roles of toll-like receptors: from inflammation to lung cancer progression. Biomed Rep 8(2):126–132. https://doi.org/10.3892/br.2017.1034

    Article  CAS  PubMed  Google Scholar 

  43. Li D, Jin Y, Sun Y, Lei J, Liu C (2014) Knockdown of toll-like receptor 4 inhibits human NSCLC cancer cell growth and inflammatory cytokine secretion in vitro and in vivo. Int J Oncol 45:813–821

    CAS  PubMed  Google Scholar 

  44. Yuan X, Zhou Y, Wang W, Li J, Xie G, Zhao Y, Xu D, Shen L (2013) Activation of TLR4 signaling promotes gastric cancer progression by inducing mitochondrial ROS production. Cell Death Dis 4:e794. https://doi.org/10.1038/cddis.2013.334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee JW, Choi JJ, Seo ES, Kim MJ, Kim WY, Choi CH et al (2007) Increased toll-like receptor 9 expression in cervical neoplasia. Mol Carcinog 46:941–947

    CAS  PubMed  Google Scholar 

  46. Kim WY, Lee JW, Choi JJ et al (2008) Increased expression of Toll-like receptor 5 during progression of cervical neoplasia. Int J Gynecol Cancer 18:300–305

    CAS  PubMed  Google Scholar 

  47. Zhang Y, Wang Q, Ma A, Li Y, Li R, Wang Y (2014) Functional expression of TLR9 in esophageal cancer. Oncol Rep 31:2298–2304

    CAS  PubMed  Google Scholar 

  48. Mäkinen LK, Atula T, Häyry V et al (2015) Predictive role of Toll-like receptors 2, 4, and 9 in oral tongue squamous cell carcinoma. Oral Oncol 51(1):96–102

    PubMed  Google Scholar 

  49. Chatterjee S, Crozet L, Damotte D, Iribarren K, Schramm C, Alifano M, Lupo A, Cherfils-Vicini J, Goc J, Katsahian S et al (2014) TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non-small cell lung cancer. Cancer Res 74:5008–5018

    CAS  PubMed  Google Scholar 

  50. Wang Q, Zhang X, Xiao T, Pan C, Liu X, Zhao Y (2018) Prognostic role of Toll-like receptors in cancer: a meta-analysis. Ther Clin Risk Manag 14:1323–1330. https://doi.org/10.2147/TCRM.S171341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. González-Reyes S, Marín L, González L et al (2010) Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer 10:665

    PubMed  PubMed Central  Google Scholar 

  52. Messaritakis I, Stogiannitsi M, Koulouridi A, Sfakianaki M, Voutsina A, Sotiriou A et al (2018) Evaluation of the detection of Toll-like receptors (TLRs) in cancer development and progression in patients with colorectal cancer. PLoS One 13:e0197327

    PubMed  PubMed Central  Google Scholar 

  53. Gast A, Bermejo JL, Claus R, Brandt A, Weires M, Weber A, Plass C, Sucker A, Hemminki K, Schadendorf D, Kumar R (2011) Association of inherited variation in Toll-like receptor genes with malignant melanoma susceptibility and survival. PLoS One 6:e24370

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Theodoropoulos GE, Saridakis V, Karantanos T et al (2012) Toll-like receptors gene polymorphisms may confer increased susceptibility to breast cancer development. Breast 21(4):534–538

    PubMed  Google Scholar 

  55. Yang ZH, Dai Q, Gu YJ, Guo QX, Gong L (2012) Cytokine and chemokine modification by Toll-like receptor polymorphisms is associated with nasopharyngeal carcinoma. Cancer Sci 103:653–658

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Tian S, Zhang L, Yang T, Wei X, Zhang L, Yu Y et al (2018) The associations between Toll-like receptor 9 gene polymorphisms and cervical cancer susceptibility. Mediators Inflamm 2018:9127146. https://doi.org/10.1155/2018/9127146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fan L, Zhou P, Hong Q, Chen A-X, Liu G-Y, Yu K-D, Shao Z-M (2019) Toll-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression: a two-stage association study and functional investigation. OncoImmunology 8(6):e1593801. https://doi.org/10.1080/2162402X.2019.1593801

    Article  PubMed  PubMed Central  Google Scholar 

  58. Slattery ML, Herrick JS, Bondurant KL, Wolff RK (2012) Toll-like receptor genes and their association with colon and rectal cancer development and prognosis. Int J Cancer 130(12):2974–2980

    CAS  PubMed  Google Scholar 

  59. Bergmann C, Bachmann HS, Bankfalvi A et al (2011) Toll-like receptor 4 single-nucleotide polymorphism Asp299Gly and Thr399Ile in head and neck squamous cell carcinoma. J Transl Med 9:139–147

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zeng HM, Pan KF, Zhang Y, Zhang L, Ma JL, Zhou T, Su HJ, Li WQ, Li JY, Gerhard M et al (2011) Genetic variants of Toll-like receptor 2 and 5, helicobacter pylori infection, and risk of gastric cancer and its precursors in a Chinese population. Cancer Epidemiol Biomarkers Prev 20:2594–2602

    CAS  PubMed  Google Scholar 

  61. De Re V, Repetto O, De Zorzi M, Casarotto M, Tedeschi M, Giuffrida P et al (2019) Polymorphism in Toll-like receptors and helicobacter pylori motility in autoimmune atrophic gastritis and gastric cancer. Cancer 11(5):648. https://doi.org/10.3390/cancers11050648

    Article  CAS  Google Scholar 

  62. Minmin S, Xiaoqian X, Hao C, Baiyong S, Xiaxing D, Junjie X, Xi Z, Jianquan Z, Songyao J (2011) Single nucleotide polymorphisms of Toll-like receptor 4 decrease the risk of development of hepatocellular carcinoma. PLoS One 6:e19466

    PubMed  PubMed Central  Google Scholar 

  63. Russo I, Cona C, Saponeri A, Bassetto F, Baldo V, Alaibac M (2016) Association between Toll-like receptor 7 Gln11Leu single-nucleotide polymorphism and basal cell carcinoma. Biomed Rep 4(4):459–462. https://doi.org/10.3892/br.2016.597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lindström S, Hunter DJ, Grönberg H, Stattin P, Wiklund F, Xu J, Chanock SJ, Hayes R, Kraft P (2010) Sequence variants in the TLR4 and TLR6-1-10 genes and prostate cancer risk. Results based on pooled analysis from three independent studies. Cancer Epidemiol Biomarkers Prev 19:873–876

    PubMed  PubMed Central  Google Scholar 

  65. Weng PH, Huang YL, Page JH et al (2014) Polymorphisms of an innate immune gene, Toll-like receptor 4, and aggressive prostate cancer risk: a systematic review and meta-analysis. PLoS One 9:e110569

    PubMed  PubMed Central  Google Scholar 

  66. Yeh DW, Huang LR, Chen YW, Huang CF, Chuang TH (2016) Interplay between inflammation and stemness in cancer cells: the role of Toll-like receptor signaling. J Immunol Res 2016:4368101

    PubMed  PubMed Central  Google Scholar 

  67. Luddy KA, Robertson-Tessi M, Tafreshi NK, Soliman H, Morse DL (2014) The role of Toll-like receptors in colorectal cancer progression: evidence for epithelial to leucocytic transition. Front Immunol 5:429

    PubMed  PubMed Central  Google Scholar 

  68. Ito H, Ando T, Arioka Y, Saito K, Seishima M (2015) Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumor effects of a Toll-like receptor 7 agonist in an established cancer model. Immunology 144:621–630

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ninomiya S, Narala N, Huye L et al (2015) Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is down regulated by lymphodepleting drugs. Blood 125:3905–3916

    CAS  PubMed  PubMed Central  Google Scholar 

  70. West AC, Tang K, Tye H, Yu L, Deng N, Najdovska M, Lin SJ, Balic JJ, Okochi-Takada E, McGuirk P, Keogh B, McCormack W, Bhathal PS, Reilly M, Oshima M, Ushijima T, Tan P, Jenkins BJ (2017) Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene 36(36):5134–5144

    CAS  PubMed  Google Scholar 

  71. Xie W, Wang Y, Huang Y et al (2009) Toll-like receptor 2 mediates invasion via activating NF-kappaB in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 379:1027–1032

    CAS  PubMed  Google Scholar 

  72. Yang HZ, Cui B, Liu HZ et al (2009) Blocking TLR2 activity attenuates pulmonary metastases of tumor. PLoS One 4:e6520

    PubMed  PubMed Central  Google Scholar 

  73. Huang B, Zhao J, Li H et al (2005) Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res 65(12):5009–5014

    CAS  PubMed  Google Scholar 

  74. Voelcker V, Gebhardt C, Averbeck M, Saalbach A, Wolf V, Weih F, Sleeman J, Anderegg U, Simon J (2008) Hyaluronan fragments induce cytokine and metalloprotease upregulation in human melanoma cells in part by signalling via TLR4. Exp Dermatol 17:100–107

    CAS  PubMed  Google Scholar 

  75. Che F, Yin J, Quan Y, Xie X, Heng X, Du Y (2017) TLR4 interaction with LPS in glioma CD133+ cancer stem cells induces cell proliferation, resistance to chemotherapy and evasion from cytotoxic T lymphocyte-induced cytolysis. Oncotarget 8(32):53495–53507

    PubMed  PubMed Central  Google Scholar 

  76. Nojiri K, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Kusagawa S, Ogura S, Tanaka J, Yoneda M, Yamamoto N, Okano H, Takei Y, Ito M et al (2013) The expression and function of Toll-like receptors 3 and 9 in human colon carcinoma. Oncol Rep 29:1737–1743

    CAS  PubMed  Google Scholar 

  77. Tanaka J, Sugimoto K, Shiraki K, Tameda M, Kusagawa S, Nojiri K, Beppu T, Yoneda K, Yamamoto N, Uchida K et al (2010) Functional cell surface expression of Toll-like receptor 9 promotes cell proliferation and survival in human hepatocellular carcinomas. Int J Oncol 37:805–814

    CAS  PubMed  Google Scholar 

  78. Grimmig T, Matthes N, Hoeland K, Tripathi S, Chandraker A, Grimm M, Moench R, Moll EM, Friess H, Tsaur I et al (2015) TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. Int J Oncol 47:857–866

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cherfils-Vicini J et al (2010) Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest 120:1285. https://doi.org/10.1172/JCI36551, Epub 8 Mar 2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kang S-J, Tak J-H, Cho J-H, Lee H-J, Jung Y-J (2010) Stimulation of the endosomal TLR pathway enhances autophagy-induced cell death in radiotherapy of breast cancer. Genes & Genomics 32(6):599–606. https://doi.org/10.1007/s13258-010-0139-x

    Article  CAS  Google Scholar 

  81. Naumann K, Wehner R, Schwarze APC, Schmitz MRJ (2013) Activation of dendritic cells by the novel Toll-like receptor 3 agonist RGC100. Clin Dev Immunol, 2013(283649). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3878805/

  82. Kim S, Takahashi H, Lin W-W, Descargues P, Grivennikov S, Kim Y, Luo J-L, Karin M (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Volk-Draper L et al (2014) Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res 74:5421–5434

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Goto Y, Arigami T, Kitago M et al (2008) Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors. Mol Cancer Ther 7:3642–3653

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jing YY, Han ZP, Sun K et al (2012) Toll-like receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced by lipopolysaccharide. BMC Med 10:98

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Park GB, Chung YH, Kim D (2017) Induction of galectin-1 by TLR-dependent PI3K activation enhances epithelial-mesenchymal transition of metastatic ovarian cancer cells. Oncol Rep 37:3137–3145

    CAS  PubMed  Google Scholar 

  87. Dajon M, Iribarren K, Petitprez F, Marmier S, Lupo A, Gillard M et al (2019) Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells. Oncoimmunology 8(1):e1505174

    PubMed  Google Scholar 

  88. Salvador B, Arranz A, Francisco S, Córdoba L, Punzón C, Llamas MÁ, Fresno M (2016) Modulation of endothelial function by Toll like receptors. Pharmacol Res 108:46–56. https://doi.org/10.1016/j.phrs.2016.03.038

    Article  CAS  PubMed  Google Scholar 

  89. Pegu A, Qin S, Fallert Junecko BA, Nisato RE, Pepper MS, Reinhart TA (2008) Human lymphatic endothelial cells express multiple functional TLRs. J Immunol 180(5):3399–3405. https://doi.org/10.4049/jimmunol.180.5.3399

    Article  CAS  PubMed  Google Scholar 

  90. Maishi N, Hida K (2017) Tumor endothelial cells accelerate tumor metastasis. Cancer Sci 108:1921–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu L et al (2016) Biglycan stimulates VEGF expression in endothelial cells by activating the TLR signaling pathway. Mol Oncol 10:1473–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Xing X, Gu X, Ma T et al (2015) Biglycan up-regulated vascular endothelial growth factor (VEGF) expression and promoted angiogenesis in colon cancer. Tumor Biol 36:1773–1780

    CAS  Google Scholar 

  93. Hojo T, Maishi N, Towfik AM, Akiyama K, Ohga N, Shindoh M et al (2017) ROS enhance angiogenic properties via regulation of NRF2 in tumor endothelial cells. Oncotarget 8(28):45484–45495. https://doi.org/10.18632/oncotarget.17567

    Article  PubMed  PubMed Central  Google Scholar 

  94. Riddell JR, Bshara W, Moser MT, Spernyak JA, Foster BA, Gollnick SO (2011) Peroxiredoxin 1 controls prostate cancer growth through Toll-like receptor 4-dependent regulation of tumor vasculature. Cancer Res 71:1637–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ling Y, Wang L, Chen Y, Feng F, You Q, Lu N et al (2011) Baicalein inhibits angiogenesis induced by lipopolysaccharide through TRAF6 mediated Toll-like receptor 4 pathway. Biomed Prev Nutr 1:172–910.1016

    Google Scholar 

  96. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC et al (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318):972–976. https://doi.org/10.1038/nature09421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thuringer D, Jego G, Wettstein G, Terrier O, Cronier L, Yousfi N, Hebrard S, Bouchot A, Hazoumé A, Joly AL, Gleave M, Rosa-Calatrava M, Solary E, Garrido C (2013) Extracellular HSP27 mediates angiogenesis through Toll-like receptor 3. FASEB J 27:4169–4183

    CAS  PubMed  Google Scholar 

  98. Paone A, Galli R, Gabellini C, Lukashev D, Starace D, Gorlach A et al (2010) Toll-like receptor 3 regulates angiogenesis and apoptosis in prostate cancer cell lines through hypoxia-inducible factor 1α. Neoplasia 12(7):539–549. https://doi.org/10.1593/NEO.92106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Volk-Draper LD, Hall KL, Wilber AC, Ran S (2017) Lymphatic endothelial progenitors originate from plastic myeloid cells activated by Toll-like receptor-4. PLoS One 12(6):e0179257

    PubMed  PubMed Central  Google Scholar 

  100. Hall KL, Volk-Draper LD, Flister MJ, Ran S (2012) New model of macrophage acquisition of the lymphatic endothelial phenotype. PLoS One 7:e31794. pmid:22396739

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sootichote R, Thuwajit P, Singsuksawat E, Warnnissorn M, Yenchitsomanus PT, Ithimakin S et al (2018) Compound A attenuates Toll-like receptor 4-mediated paclitaxel resistance in breast cancer and melanoma through suppression of IL-8. BMC Cancer 18(1):231

    PubMed  PubMed Central  Google Scholar 

  102. Szajnik M, Szczepanski MJ, Czystowska M, Elishaev E, Mandapathil M, Nowak-Markwitz E et al (2009) TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene 28:4353–4363

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Jeon YK, Kim CK, Koh J, Chung DH, Ha GH (2016) Pellino-1 confers chemoresistance in lung cancer cells by upregulating cIAP2 through Lys63-mediated polyubiquitination. Oncotarget 7(27):41811–41824. https://doi.org/10.18632/oncotarget.9619

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kim WS, Kim H, Kwon KW, Im SH, Lee BR, Ha SJ, Shin SJ (2016) Cisplatin induces tolerogenic dendritic cells in response to TLR agonists via the abundant production of IL-10, thereby promoting Th2- and Tr1-biased T-cell immunity. Oncotarget 7:33765–33782

    PubMed  PubMed Central  Google Scholar 

  105. Sugiura A, Rathmell JC (2018) Metabolic barriers to T cell function in tumors. J Immunol 200(2):400–407. https://doi.org/10.4049/jimmunol.1701041

    Article  CAS  PubMed  Google Scholar 

  106. Karki K, Pande D, Negi R, Khanna S, Khanna RS, Khanna HD (2015) Correlation of serum Toll like receptor 9 and trace elements with lipid peroxidation in the patients of breast diseases. J Trace Elem Med Biol 30:11–16

    CAS  PubMed  Google Scholar 

  107. Veyrat M, Durand S, Classe M, Glavan TM, Oker N, Kapetanakis NI et al (2016) Stimulation of the Toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget 7:82580–82593

    PubMed  PubMed Central  Google Scholar 

  108. Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S et al (2014) TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med 6:1294–1311

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ito H, Ando T, Arioka Y et al (2015) Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumor effects of a Toll-like receptor 7 agonist in an established cancer model. Immunology 144:621–630

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ito H et al (2015) Inhibition of induced nitric oxide synthase enhances the anti-tumor effects on cancer immunotherapy using TLR7 agonist in mice. Cancer Immunol Immunother 64(4):429–436

    CAS  PubMed  Google Scholar 

  111. Huang B, Zhao J, Unkeless J, Feng Z, Xiong H (2008) TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27:218. https://doi.org/10.1038/sj.onc.1210904

    Article  CAS  PubMed  Google Scholar 

  112. Kopp E, Medzhitov R (2003) Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 15(4):396–401

    CAS  PubMed  Google Scholar 

  113. Bassi P (2002) BCG (Bacillus of Calmette Guerin) therapy of high-risk superficial bladder cancer. Surg Oncol 11(1–2):77–83

    PubMed  Google Scholar 

  114. Poh AR, Ernst M (2018) Targeting macrophages in cancer: from bench to bedside. Front Oncol 8:49

    PubMed  PubMed Central  Google Scholar 

  115. Bellora F, Castriconi R, Dondero A, Pessino A, Nencioni A, Liggieri G, Moretta L, Mantovani A, Moretta A, Bottino C (2014) TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol 44:1814–1822

    CAS  PubMed  Google Scholar 

  116. Vidyarthi A, Khan N, Agnihotri T, Negi S, Das DK, Aqdas M, Chatterjee D, Colegio OR, Tewari MK, Agrewala JN (2018) TLR-3 stimulation skews M2 macrophages to M1 through IFN-αβ signaling and restricts tumor progression. Front Immunol 9:1650. https://doi.org/10.3389/fimmu.2018.01650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109:E2110–E2116

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Collin M, Bigley V (2018) Human dendritic cell subsets: an update. Immunology 154:3–20

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    CAS  PubMed  Google Scholar 

  120. Mathan TS, Figdor CG, Buschow SI (2013) Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 4:372

    PubMed  PubMed Central  Google Scholar 

  121. Hemont C, Neel A, Heslan M, Braudeau C, Josien R (2013) Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J Leukoc Biol 93:599–609. https://doi.org/10.1189/jlb.0912452

    Article  CAS  PubMed  Google Scholar 

  122. Zong J, Keskinov AA, Shurin GV et al (2016) Tumor-derived factors modulating dendritic cell function. Cancer Immunol Immunother 65(7):821–833

    CAS  PubMed  Google Scholar 

  123. Idoyaga J, Moreno J, Bonifaz L (2007) Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands. Cancer Immunol Immunother 56:1237–5010

    PubMed  Google Scholar 

  124. Dong H, Bullock TN (2014) Metabolic influences that regulate dendritic cell function in tumors. Front Immunol 5:24

    PubMed  PubMed Central  Google Scholar 

  125. Curtin JF, Liu N, Candolfi M et al (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PLoS Med 6:e10

    PubMed  Google Scholar 

  126. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira J-P, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    CAS  PubMed  Google Scholar 

  127. Chen T, Guo J, Han C, Yang M, Cao X (2009) Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol 182:1449–1459

    CAS  PubMed  Google Scholar 

  128. Roselli E, Araya P, Núñez NG, Gatti G, Graziano F, Sedlik C et al (2019) TLR3 activation of intratumoral CD103+ dendritic cells modifies the tumor infiltrate conferring anti-tumor immunity. Front Immunol 10:503. https://doi.org/10.3389/fimmu.2019.00503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tang M, Diao J, Gu H, Khatri I, Zhao J, Cattral MS (2015) Toll-like receptor 2 activation promotes tumor dendritic cell dysfunction by regulating IL-6 and IL-10 receptor signaling. Cell Rep 13:2851–2864

    CAS  PubMed  Google Scholar 

  130. Godefroy E, Gallois A, Idoyaga J, Merad M, Tung N, Monu N, Saenger Y, Fu Y, Ravindran R, Pulendran B, Jotereau F, Trombetta S, Bhardwaj N (2014) Activation of Toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic- cell-mediated inflammatory responses. Cell Rep 9:1856–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Green TL et al (2014) Toll-like receptor (TLR) expression of immune system cells from metastatic breast cancer patients with circulating tumor cells. Exp Mol Pathol 97:44–48

    CAS  PubMed  Google Scholar 

  132. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37:208–220. https://doi.org/10.1016/j.it.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang J, Shirota Y, Bayik D, Shirota H, Tross D, Gulley JL, … Klinman DM (2015) Effect of TLR agonists on the differentiation and function of human monocytic myeloid-derived suppressor cells. J Immunol 194(9):4215–4221

    Google Scholar 

  134. Dajon M, Iribarren K, Petitprez F, Marmier S, Lupo A, Gillard M, … Cremer I (2019) Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells. Oncoimmunology, 8(1):e1505174

    Google Scholar 

  135. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P et al (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71:5412–5422

    CAS  PubMed  Google Scholar 

  137. Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, Mortara L (2019) Natural killer cells as key players of tumor progression and angiogenesis: old and novel tools to divert their pro-tumor activities into potent anti-tumor effects. Cancer 11(4):461. https://doi.org/10.3390/cancers11040461

    Article  CAS  Google Scholar 

  138. Guo Q, Zhang C (2012) Critical role of Toll-like receptor signaling in NK cell activation. Chin Sci Bull 57(24):3192–3202. https://doi.org/10.1007/s11434-012-5257-1

    Article  CAS  Google Scholar 

  139. Pisegna S, Pirozzi G, Piccoli M et al (2004) p38 MAPK activation controls the TLR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells. Blood 104:4157–4164

    CAS  PubMed  Google Scholar 

  140. Xie L, Pries R, Kesselring R et al (2007) Head and neck cancer triggers the internalization of TLR3 in natural killer cells. Int J Mol Med 20:493–499

    CAS  PubMed  Google Scholar 

  141. Ma F, Zhang J, Zhang J et al (2010) The TLR-7 agonists, imiquimod and gardiquimod, improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol 7:381–388

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Pries R, Wulff S, Kesselring R et al (2008) Up-regulation of NK cell function against head and neck cancer in response to ss-isRNA requires TLR7. Int J Oncol 33:993–1000

    CAS  PubMed  Google Scholar 

  143. Ciavattone NG, Parker D, Joseph AM, Davila E (2018) MyD88-stimulated T cells acquire resistance to MDSC-mediated suppression. J Immunol 200(1 Suppl):56.26

    Google Scholar 

  144. Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S et al (2014) TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med 6(10):1294–1311

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Shojaei H, Oberg HH, Juricke M, Marischen L, Kunz M, Mundhenke C et al (2009) Toll-like receptors 3 and 7 agonists enhance tumor cell lysis by human gammadelta T cells. Cancer Res 69(22):8710–8717. https://doi.org/10.1158/0008-5472.CAN-09-1602

    Article  CAS  PubMed  Google Scholar 

  146. Oberg H-H, Juricke M, Kabelitz D, Wesch D (2011) Regulation of T cell activation by TLR ligands. Eur J Cell Biol 90(6–7):582–592. https://doi.org/10.1016/j.ejcb.2010.11.012

    Article  CAS  PubMed  Google Scholar 

  147. Tao L, Huang G, Song H, Chen Y, Chen L (2017) Cancer associated fibroblasts: an essential role in the tumor microenvironment. Oncol Lett 14:2611–2620

    PubMed  PubMed Central  Google Scholar 

  148. Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K (2018, May 21) Fibroblasts in the tumor microenvironment: Shield or spear? Int J Mol Sci 19

    Google Scholar 

  149. Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R (2019) Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol Cancer 18:70

    PubMed  PubMed Central  Google Scholar 

  150. Torres S, Bartolome RA, Mendes M, Barderas R, Fernandez-Acenero MJ, Pelaez-Garcia A, Pena C, Lopez-Lucendo M, Villar-Vazquez R, de Herreros AG et al (2013) Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res 19:6006–6019

    CAS  PubMed  Google Scholar 

  151. De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, Maynard D, Denys H, Lambein K, Braems G et al (2013) Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 62:550–560

    PubMed  Google Scholar 

  152. Yao C, Oh JH, Lee DH, Bae JS, Jin CL, Park CH et al (2015) Toll-like receptor family members in skin fibroblasts are functional and have a higher expression compared to skin keratinocytes. Int J Mol Med 35:1443–1450

    CAS  PubMed  Google Scholar 

  153. Eiró N, González L, González LO et al (2013) Toll-like receptor-4 expression by stromal fibroblasts is associated with poor prognosis in colorectal cancer. J Immunother 36(6):342–349

    PubMed  Google Scholar 

  154. Zhao XL, Lin Y, Jiang J, Tang Z, Yang S, Lu L et al (2017) High-mobility group box 1 released by autophagic cancer-associated fibroblasts maintains the stemness of luminal breast cancer cells. J Pathol 243:376–389

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Koliaraki V, Chalkidi N, Henriques A, Tzaferis C, Polykratis A, Waisman A et al (2019) Innate Sensing through Mesenchymal TLR4/MyD88 Signals Promotes Spontaneous Intestinal Tumorigenesis. Cell Rep 26(3):536–545.e4. https://doi.org/10.1016/j.celrep.2018.12.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. González-Reyes S, Marín L, González L, González LO, del Casar JM, Lamelas ML et al (2010) Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis. BMC Cancer 10:665. https://doi.org/10.1186/1471-2407-10-665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Xu Y, Ma J, Zheng Q, Wang Y, Hu M, Ma F et al (2019) MPSSS impairs the immunosuppressive function of cancer-associated fibroblasts via the TLR4-NF-κB pathway. Biosci Rep 39(5):BSR20182171

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Vacchelli E, Galluzzi L, Eggermont A et al (2012) Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 1:894–907

    PubMed  PubMed Central  Google Scholar 

  159. Smith M, García-Martínez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L (2018) Trial watch: Toll-like receptor agonists in cancer immunotherapy. OncoImmunology 7:12

    Google Scholar 

  160. Van der Snoek EM, den Hollander JC, van der Ende ME (2015) Imiquimod 5% cream for five consecutive days a week in an HIV-infected observational cohort up to 32 weeks in the treatment of high-grade squamous intraepithelial lesions. Sex Transm Infect 91:245–247

    PubMed  Google Scholar 

  161. Huang SJ et al (2009) Imiquimod enhances IFN-γ production and effector function of T cells infiltrating human squamous cell carcinomas of the skin. J Invest Derm 129:2676–2685

    CAS  PubMed  Google Scholar 

  162. D’agostini C, Pica F, Febbraro G, Grelli S, Chiavaroli C, Garaci E (2005) Antitumor effect of OM-174 and cyclophosphamide on murine B16 melanoma in different experimental conditions. Int Immunopharmacol 5:1205–1212

    PubMed  Google Scholar 

  163. Isambert N, Fumoleau P, Paul C, Ferrand C, Zanetta S, Bauer J, Ragot K, Lizard G, Jeannin JF, Bardou M (2013) Phase I study of OM-174, a lipid A analogue, with assessment of immunological response, in patients with refractory solid tumors. BMC Cancer 13:172

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Onier N, Hilpert S, Arnould L, Saint-Giorgio V, Davies JG, Bauer J, Jeannin JF (1999) Cure of colon cancer metastasis in rats with the new lipid A OM 174. Apoptosis of tumor cells and immunization of rats. Clin Exp Metastasis 17:299–306

    CAS  PubMed  Google Scholar 

  165. Ghochikyan A, Pichugin A, Bagaev A, Davtyan A, Hovakimyan A, Tukhvatulin A, Davtyan H, Shcheblyakov D, Logunov D, Chulkina M (2014) Targeting TLR-4 with a novel pharmaceutical grade plant derived agonist, Immunomax®, as a therapeutic strategy for metastatic breast cancer. Transl Med 29(12):322

    Google Scholar 

  166. Murata M (2008) Activation of Toll-like receptor 2 by a novel preparation of cell wall skeleton from Mycobacterium bovis BCG Tokyo (SMP-105) sufficiently enhances immune responses against tumors. Cancer Sci 99:1435–1440

    CAS  PubMed  Google Scholar 

  167. Feng Y, Mu R, Wang Z, Xing P, Zhang J, Dong L, Wang C (2019) A Toll-like receptor agonist mimicking microbial signal to generate tumor-suppressive macrophages. Nat Commun 10(1):2272. https://doi.org/10.1038/s41467-019-10354-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hua D, Liu MY, Cheng ZD, Qin XJ, Zhang HM, Chen Y, Qin GJ, Liang G, Li JN, Han XF et al (2009) Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity. Mol Immunol 46(15):2876–2884

    CAS  PubMed  Google Scholar 

  169. Yang H, Zhou H, Feng P et al (2010) Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. J Exp Clin Cancer Res CR 29:92

    PubMed  Google Scholar 

  170. Huang Y, Cai B, Xu M et al (2012) Gene silencing of Toll-like receptor 2 inhibits proliferation of human liver cancer cells and secretion of inflammatory cytokines. PLoS One 7:e38890

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Farnebo L, Shahangian A, Lee Y, Shin JH, Scheeren FA, Sunwoo JB (2015) Targeting Toll-like receptor 2 inhibits growth of head and neck squamous cell carcinoma. Oncotarget 6(12):9897–9907

    PubMed  PubMed Central  Google Scholar 

  172. Yang HZ, Cui B, Liu HZ, Mi S, Yan J, Yan HM, Hua F, Lin H, Cai WF, Xie WJ et al (2009) Blocking TLR2 activity attenuates pulmonary metastases of tumor. PLoS One 4:e6520

    PubMed  PubMed Central  Google Scholar 

  173. Pei Z, Lin D, Song X et al (2008) TLR4 signaling promotes the expression of VEGF and TGFbeta1 in human prostate epithelial PC3 cells induced by lipopolysaccharide. Cell Immunol 254:20–27

    CAS  PubMed  Google Scholar 

  174. Rousseau MC, Hsu RYC, Spicer JD, McDonald B, Chan CHF, Perera RM, Giannias B, Chow SC, Rousseau S, Law S et al (2013) Lipopolysaccharide-induced Toll-like receptor 4 signaling enhances the migratory ability of human esophageal cancer cells in a selectin-dependent manner. Surgery 154:69–77

    PubMed  Google Scholar 

  175. Hsu RY, Chan CH, Spicer JD et al (2011) LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res 71(5):1989–1998

    CAS  PubMed  Google Scholar 

  176. Chow SC, Gowing SD, Cools-Lartigue JJ et al (2015) Gram negative bacteria increase non-small cell lung cancer metastasis via Toll-like receptor 4 activation and mitogen-activated protein kinase phosphorylation. Int J Cancer J Int Cancer 136:1341–1350

    CAS  Google Scholar 

  177. Yu P, Cheng X, Du Y et al (2013) TAK-242 can be the potential agents for preventing invasion and metastasis of hepatocellular carcinoma. Med Hypotheses 81:653–655

    CAS  PubMed  Google Scholar 

  178. Pratheeshkumar P, Son Y-O, Budhraja A et al (2012) Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PLoS One 7:e52279

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Huang X, Dai S, Dai J et al (2015) Luteolin decreases invasiveness, deactivates STAT3 signaling, and reverses interleukin-6 induced epithelial-mesenchymal transition and matrix metalloproteinase secretion of pancreatic cancer cells. OncoTargets Ther 8:2989–3001

    CAS  Google Scholar 

  180. Mohamed FE, Al-Jehani RM, Minogue SS et al (2015) Effect of Toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int Off J Int Assoc Study Liver 35:1063–1076

    CAS  Google Scholar 

  181. Sharma N, Vacher J, Allison JP (2019) TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci 116:10453–10462

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Rodell CB, Arlauckas SP, Cuccarese MF et al (2018) TLR7/8-agonist-loaded nanoparticles promote the polarization of tumor-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2:578–588

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Stier S, Maletzki C, Klier U, Linnebacher M (2013) Combinations of TLR ligands: a promising approach in cancer immunotherapy. Clin Dev Immunol 2013:1–14

    Google Scholar 

  184. Lu H, Wagner WM, Gad E, Yang Y, Duan H, Amon LM et al (2010) Treatment failure of a TLR-7 agonist occurs due to self-regulation of acute inflammation and can be overcome by IL-10 blockade. J Immunol 184:5360–5367

    CAS  PubMed  Google Scholar 

  185. Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM, Waisman J, Allison KH, Dang Y, Disis ML (2017) Topical imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a Phase 2 clinical trial. JAMA Oncol 3:969–973

    PubMed  PubMed Central  Google Scholar 

  186. Khodadoust MS, Chu MP, Czerwinski D, McDonald K, Long S, Kohrt HE, Hoppe RT, Advani RH, Lowsky T, Levy R (2015) Phase I/II study of intratumoral injection of SD-101, an immunostimulatory CpG, and intratumoral injection of ipillumumab, an anti-CTLA-4 monoclonal antibody, in combination with local radiation in low-grade B-cell lymphomas. J Clin Oncol 33:TPS8604–TPS

    Google Scholar 

  187. Griffiths EA, Srivastava P, Matsuzaki J, Brumberger Z, Wang ES, Kocent J, Miller A, Roloff GW, Wong HY, Paluch BE et al (2018) NY-ESO-1 vaccination in combination with decitabine induces antigen-specific T-lymphocyte responses in patients with myelodysplastic syndrome. Clin Cancer Res 24:1019–1029. https://doi.org/10.1158/1078-0432.CCR-17-1792

    Article  CAS  PubMed  Google Scholar 

  188. Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, Connelly AK, Dibridge S, Mason G, Whiteside TL et al (2016) Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro Oncol 18:1157–1168

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Mehrotra S, Britten CD, Chin S, Garrett-Mayer E, Cloud CA, Li M, Scurti G, Salem ML, Nelson MH, Thomas MB et al (2017) Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol 10:82

    PubMed  PubMed Central  Google Scholar 

  190. Conforti R, Ma Y, Morel Y, Paturel C, Terme M, Viaud S et al (2010) Opposing effects of Toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to optimize the anticancer efficacy of TLR3 ligands. Cancer Res 70:490–500

    CAS  PubMed  Google Scholar 

  191. Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG et al (2011) Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118(26):6836–6844

    CAS  PubMed  Google Scholar 

  192. Madan-Lala R, Pradhan P, Roy K (2017) Combinatorial delivery of dual and triple TLR agonists via polymeric pathogen-like particles synergistically enhances innate and adaptive immune responses. Sci Rep 7(1):2530. https://doi.org/10.1038/s41598-017-02804-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Schau I, Michen S, Hagstotz A, Janke A, Schackert G, Appelhans D, Temme A (2019) Targeted delivery of TLR3 agonist to tumor cells with single chain antibody fragment-conjugated nanoparticles induces type I-interferon response and apoptosis. Sci Rep 9(1):3299. https://doi.org/10.1038/s41598-019-40032-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Cremer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angrini, M., Varthaman, A., Cremer, I. (2020). Toll-Like Receptors (TLRs) in the Tumor Microenvironment (TME): A Dragon-Like Weapon in a Non-fantasy Game of Thrones. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-44518-8_9

Download citation

Publish with us

Policies and ethics