Skip to main content

Assembly of Cellular Nanomachines

Chirality and Enthalpy Drive Assembly of Higher Order Cellular Structures

  • Chapter
  • First Online:
Book cover Cellular Nanomachines
  • 356 Accesses

Abstract

Figure: Schematic diagram and the EM micrograph of the self-assembled t-/v-SNARE ring complex established when v-SNARE-associated membrane interacts with t-SNARE-associated membrane [Taken from J. Cell. Mol. Med. 2011, 15:31–37.] ©Bhanu Jena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zwang, T. J., Hurlimann, S., Hill, M. G., & Barton, J. K. (2016). Helix-dependent spin filtering through the DNA duplex. Journal of the American Chemical Society, 138, 15551–15554.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar, A., Capua, E., Kesharwani, M. K., Martin, J. M. L., Sitbon, E., Waldeck, D. H., & Naaman, R. (2017). Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America, 114, 2474–2478.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. McDormott, M. L., Vanselous, H., Corcelli, S. A., & Petersen, P. B. (2017). DNA’s chiral spine of hydration. ACS Central Science, 3, 708–714.

    Google Scholar 

  4. Joyce, G. F., Visser, G. M., van Boeckel, C. A. A., van Boom, J. H., Orgel, L., & van Westrenen, J. (1984). Chiral selection in poly(C)-directed synthesis of oligo(G). Nature, 310, 602–604.

    CAS  PubMed  Google Scholar 

  5. Avetisov, V. A., & Goldanskii, V. I. (1991). Homochirality and stereospecific activity: Evolutionary aspects. Biosystems, 25, 141–149.

    CAS  PubMed  Google Scholar 

  6. Blackmond, G. G. (2010). The origin of biological homochirality. Cold Spring Harbor Perspectives in Biology, 2, a002147. Edited by David Deamer and Jack W. Szostak.

    PubMed  PubMed Central  Google Scholar 

  7. Park, J. T., & Strominger, J. I. (1957). Mode of action of penicillin. Science, 125, 99–101.

    CAS  PubMed  Google Scholar 

  8. Hancock, R. (1960). The amino acid composition of the protein and cell wall of Staphylococcus aureus. Biochimica et Biophysica Acta, 37, 42–46.

    CAS  PubMed  Google Scholar 

  9. Lam, H., Oh, D.-C., Cava, F., Takacs, C. N., Clardy, J., de Pedro, M. A., et al. (2009). D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science, 325, 1552–1555.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolodkin-Gal, I., Romero, D., Cao, S., Clardy, J., Kolter, R., & Losick, R. (2010). D-amino acids trigger biofilm disassembly. Science, 328, 627–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kepert, I., Fonseca, J., Müller, C., Milger, K., Hochwind, K., Kostric, M., et al. (2017). D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. The Journal of Allergy and Clinical Immunology, 139, 1525–1535.

    CAS  PubMed  Google Scholar 

  12. Epand, R. M., Rychnovsky, S. D., & Belani, J. D. (2005). Role of chirality in peptide-induced formation of cholesterol-rich domains. The Biochemical Journal, 390, 541–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wezenberg, S. J., & Feringa, B. L. (2018). Supramolecularly directed rotary motion in a photosensitive receptor. Nature Communications, 9, 1984–1990.

    PubMed  PubMed Central  Google Scholar 

  14. Leigh, D. A., Wong, J. K. Y., Dehes, F., & Zerbetto, F. (2003). Unidirectional rotation in a mechanically interlocked molecular rotor. Nature, 424, 174–179.

    CAS  PubMed  Google Scholar 

  15. Hernández, J. V., Kay, E. R., & Leigh, D. A. (2004). A reversible synthetic rotary molecular motor. Science, 306, 1532–1537.

    PubMed  Google Scholar 

  16. Wilson, M. R., Sola, J., Carlone, A., Goldup, S. M., Lebrasseur, N., & Leigh, D. A. (2016). An autonomous chemically fuelled small-molecule motor. Nature, 534, 235–240.

    CAS  PubMed  Google Scholar 

  17. Astumian, R. D. (2016). Optical vs. chemical driving for molecular machines. Faraday Discussions, 195, 583–597.

    CAS  PubMed  Google Scholar 

  18. Pezzato, C., Cheng, C., Stoddart, J. F., & Astumian, R. D. (2017). Mastering the non- equilibrium assembly and operation of molecular machines. Chemical Society Reviews, 46, 5491–5507.

    CAS  PubMed  Google Scholar 

  19. Nesci, S., Trombetti, F., Ventrella, V., & Pagliarani, A. (2015). Opposite rotation directions in the synthesis and hydrolysis of ATP by ATP synthase: Hints from a subunit asymmetry. The Journal of Membrane Biology, 248, 163–169.

    CAS  PubMed  Google Scholar 

  20. Harkness, R. W., Avakyan, N., Sleiman, H. F., & Mittermaier, A. K. (2018). Mapping the energy landscapes of supramolecular assembly by thermal hysteresis. Nature Communications, 9, 3152–3161.

    Google Scholar 

  21. Mergny, J. L., & Lacroix, L. (2003). Analysis of thermal melting curves. Oligonucleotides, 13, 515–537.

    CAS  PubMed  Google Scholar 

  22. Small, D. M., & Shipley, G. G. (1974). Physical-chemical basis of lipid deposition in atherosclerosis. Science, 185, 222–229.

    CAS  PubMed  Google Scholar 

  23. Mahamid, J., Tegunov, D., Maiser, A., Arnold, J., Leonhardt, H., Plitzko, J. M., & Baumeister, W. (2019). Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proceedings of the National Academy of Sciences of the United States of America, 116, 16866–16871.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Baumgart, T., Hammond, A. T., Sengupta, P., Hess, S. T., Holowka, D. A., Baird, B. A., & Webb, W. W. (2007). Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America, 104, 3165–3170.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Walter, H., & Brooks, D. E. (1995). Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Letters, 361, 135–139.

    CAS  PubMed  Google Scholar 

  26. Humphrey, D., Duggan, C., Saha, D., Smith, D., & Käs, J. (2002). Active fluidization of polymer networks through molecular motors. Nature, 416, 413–416.

    CAS  PubMed  Google Scholar 

  27. Brangwynne, C. P., Eckmann, C. R., Courson, D. S., Rybarska, A., Hoege, C., Gharakhani, J., et al. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 324, 1729–1732.

    CAS  PubMed  Google Scholar 

  28. Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387, 569–572.

    CAS  PubMed  Google Scholar 

  29. Wang, S., Lee, J. S., Bishop, N., Jeremic, A., Cho, W. J., Chen, X., Mao, G., Taatjes, D. J., & Jena, B. P. (2012). 3D organization and function of the cell: Golgi budding and vesicle biogenesis to docking at the porosome complex. Histochemistry and Cell Biology, 137, 703–718.

    CAS  PubMed  Google Scholar 

  30. Cho, S.-J., Kelly, M., Rognlien, K. T., Cho, J. A., Horber, J. K. H., & Jena, B. P. (2002). SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophysical Journal, 83, 2522–2527.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho, W.-J., Jeremic, A., & Jena, B. P. (2005). Size of supramolecular SNARE complex: Membrane-directed self-assembly. Journal of the American Chemical Society, 127, 10156–10157.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeremic, A., Quinn, A. S., Cho, W.-J., Taatjes, D. J., & Jena, B. P. (2006). Energy-dependent disassembly of self-assembled SNARE complex: Observation at nanometer resolution using atomic force microscopy. Journal of the American Chemical Society, 128, 26–27.

    CAS  PubMed  Google Scholar 

  33. Shin, L., Cho, W.-J., Cook, J., Stemmler, T., & Jena, B. P. (2010). Membrane lipids influence protein complex assembly-disassembly. Journal of the American Chemical Society, 132, 5596–5597.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho, W. J., Lee, J.-S., Ren, G., Zhang, L., Shin, L., Manke, C. W., Potoff, J., Kotaria, N., Zhvania, M. G., & Jena, B. P. (2011). Membrane-directed molecular assembly of the neuronal SNARE complex. Journal of Cellular and Molecular Medicine, 15, 31–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Naik, A. R., Kuhn, E. R., Lewis, K. T., Kokotovich, K. M., Maddipati, K. R., Chen, X., Hörber, J. H. K., Taatjes, D. J., Potoff, J. J., & Jena, B. P. (2019). Self-assembly and biogenesis of the cellular membrane are dictated by membrane stretch and composition. The Journal of Physical Chemistry. B, 123, 6997–7005.

    CAS  PubMed  Google Scholar 

  36. Jeremic, A., Kelly, M., Cho, J.-H., Cho, S.-J., Horber, J. K. H., & Jena, B. P. (2004). Calcium drives fusion of SNARE-apposed bilayers. Cell Biology International, 28, 19–31.

    CAS  PubMed  Google Scholar 

  37. Bako, I., Hutter, J., & Palinkas, G. (2002). Car-Parrinello molecular dynamics simulation of the hydrated calcium ion. The Journal of Chemical Physics, 117, 9838–9843.

    CAS  Google Scholar 

  38. McIntosh, T. J. (2000). Short-range interactions between lipid bilayers measured by X-ray diffraction. Current Opinion in Structural Biology, 10, 481–485.

    CAS  PubMed  Google Scholar 

  39. Portis, A., Newton, C., Pangborn, W., & Papahadjopoulos, D. (1979). Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+ phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry, 18, 780–790.

    CAS  PubMed  Google Scholar 

  40. Jeremic, A., Cho, W. J., & Jena, B. P. (2004). Membrane fusion: What may transpire at the atomic level. Journal of Biological Physics and Chemistry, 4, 139–142.

    CAS  Google Scholar 

  41. Potoff, J. J., Issa, Z., Manke, C. W., Jr., & Jena, B. P. (2008). Ca2+-Dimethylphosphate complex formation: Providing insight into Ca2+ mediated local dehydration and membrane fusion in cells. Cell Biology International, 32, 361–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Weber, T., Zemelman, B. V., McNew, J. A., Westerman, B., Gmachi, M., Parlati, F., Söllner, T. H., & Rothman, J. E. (1998). SNAREpins: Minimal machinery for membrane fusion. Cell, 92, 759–772.

    CAS  PubMed  Google Scholar 

  43. Rothman, J. E. (1994). Mechanisms of intracellular protein transport. Nature, 372, 55–63.

    CAS  PubMed  Google Scholar 

  44. Lewis, K. T., Maddipati, K. R., Naik, A. R., & Jena, B. P. (2017). Unique lipid chemistry of synaptic vesicle and synaptosome membrane revealed using mass spectrometry. ACS Chemical Neuroscience, 8, 1163–1169.

    CAS  PubMed  Google Scholar 

  45. Bogan, J. S., Xu, Y., & Hao, M. (2012). Cholesterol accumulation increases insulin granule size and impairs membrane trafficking. Traffic (Copenhagen, Denmark), 13, 1466–1480.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, B.P. (2020). Assembly of Cellular Nanomachines. In: Cellular Nanomachines. Springer, Cham. https://doi.org/10.1007/978-3-030-44496-9_8

Download citation

Publish with us

Policies and ethics