Advertisement

Assembly of Cellular Nanomachines

Chirality and Enthalpy Drive Assembly of Higher Order Cellular Structures
Chapter
  • 185 Downloads

Abstract

Figure: Schematic diagram and the EM micrograph of the self-assembled t-/v-SNARE ring complex established when v-SNARE-associated membrane interacts with t-SNARE-associated membrane [Taken from J. Cell. Mol. Med. 2011, 15:31–37.] ©Bhanu Jena.

References

  1. 1.
    Zwang, T. J., Hurlimann, S., Hill, M. G., & Barton, J. K. (2016). Helix-dependent spin filtering through the DNA duplex. Journal of the American Chemical Society, 138, 15551–15554.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kumar, A., Capua, E., Kesharwani, M. K., Martin, J. M. L., Sitbon, E., Waldeck, D. H., & Naaman, R. (2017). Chirality-induced spin polarization places symmetry constraints on biomolecular interactions. Proceedings of the National Academy of Sciences of the United States of America, 114, 2474–2478.PubMedPubMedCentralGoogle Scholar
  3. 3.
    McDormott, M. L., Vanselous, H., Corcelli, S. A., & Petersen, P. B. (2017). DNA’s chiral spine of hydration. ACS Central Science, 3, 708–714.Google Scholar
  4. 4.
    Joyce, G. F., Visser, G. M., van Boeckel, C. A. A., van Boom, J. H., Orgel, L., & van Westrenen, J. (1984). Chiral selection in poly(C)-directed synthesis of oligo(G). Nature, 310, 602–604.PubMedGoogle Scholar
  5. 5.
    Avetisov, V. A., & Goldanskii, V. I. (1991). Homochirality and stereospecific activity: Evolutionary aspects. Biosystems, 25, 141–149.PubMedGoogle Scholar
  6. 6.
    Blackmond, G. G. (2010). The origin of biological homochirality. Cold Spring Harbor Perspectives in Biology, 2, a002147. Edited by David Deamer and Jack W. Szostak.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Park, J. T., & Strominger, J. I. (1957). Mode of action of penicillin. Science, 125, 99–101.PubMedGoogle Scholar
  8. 8.
    Hancock, R. (1960). The amino acid composition of the protein and cell wall of Staphylococcus aureus. Biochimica et Biophysica Acta, 37, 42–46.PubMedGoogle Scholar
  9. 9.
    Lam, H., Oh, D.-C., Cava, F., Takacs, C. N., Clardy, J., de Pedro, M. A., et al. (2009). D-Amino acids govern stationary phase cell wall remodeling in bacteria. Science, 325, 1552–1555.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kolodkin-Gal, I., Romero, D., Cao, S., Clardy, J., Kolter, R., & Losick, R. (2010). D-amino acids trigger biofilm disassembly. Science, 328, 627–629.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kepert, I., Fonseca, J., Müller, C., Milger, K., Hochwind, K., Kostric, M., et al. (2017). D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. The Journal of Allergy and Clinical Immunology, 139, 1525–1535.PubMedGoogle Scholar
  12. 12.
    Epand, R. M., Rychnovsky, S. D., & Belani, J. D. (2005). Role of chirality in peptide-induced formation of cholesterol-rich domains. The Biochemical Journal, 390, 541–548.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Wezenberg, S. J., & Feringa, B. L. (2018). Supramolecularly directed rotary motion in a photosensitive receptor. Nature Communications, 9, 1984–1990.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Leigh, D. A., Wong, J. K. Y., Dehes, F., & Zerbetto, F. (2003). Unidirectional rotation in a mechanically interlocked molecular rotor. Nature, 424, 174–179.PubMedGoogle Scholar
  15. 15.
    Hernández, J. V., Kay, E. R., & Leigh, D. A. (2004). A reversible synthetic rotary molecular motor. Science, 306, 1532–1537.PubMedGoogle Scholar
  16. 16.
    Wilson, M. R., Sola, J., Carlone, A., Goldup, S. M., Lebrasseur, N., & Leigh, D. A. (2016). An autonomous chemically fuelled small-molecule motor. Nature, 534, 235–240.PubMedGoogle Scholar
  17. 17.
    Astumian, R. D. (2016). Optical vs. chemical driving for molecular machines. Faraday Discussions, 195, 583–597.PubMedGoogle Scholar
  18. 18.
    Pezzato, C., Cheng, C., Stoddart, J. F., & Astumian, R. D. (2017). Mastering the non- equilibrium assembly and operation of molecular machines. Chemical Society Reviews, 46, 5491–5507.PubMedGoogle Scholar
  19. 19.
    Nesci, S., Trombetti, F., Ventrella, V., & Pagliarani, A. (2015). Opposite rotation directions in the synthesis and hydrolysis of ATP by ATP synthase: Hints from a subunit asymmetry. The Journal of Membrane Biology, 248, 163–169.PubMedGoogle Scholar
  20. 20.
    Harkness, R. W., Avakyan, N., Sleiman, H. F., & Mittermaier, A. K. (2018). Mapping the energy landscapes of supramolecular assembly by thermal hysteresis. Nature Communications, 9, 3152–3161.Google Scholar
  21. 21.
    Mergny, J. L., & Lacroix, L. (2003). Analysis of thermal melting curves. Oligonucleotides, 13, 515–537.PubMedGoogle Scholar
  22. 22.
    Small, D. M., & Shipley, G. G. (1974). Physical-chemical basis of lipid deposition in atherosclerosis. Science, 185, 222–229.PubMedGoogle Scholar
  23. 23.
    Mahamid, J., Tegunov, D., Maiser, A., Arnold, J., Leonhardt, H., Plitzko, J. M., & Baumeister, W. (2019). Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proceedings of the National Academy of Sciences of the United States of America, 116, 16866–16871.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Baumgart, T., Hammond, A. T., Sengupta, P., Hess, S. T., Holowka, D. A., Baird, B. A., & Webb, W. W. (2007). Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America, 104, 3165–3170.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Walter, H., & Brooks, D. E. (1995). Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Letters, 361, 135–139.PubMedGoogle Scholar
  26. 26.
    Humphrey, D., Duggan, C., Saha, D., Smith, D., & Käs, J. (2002). Active fluidization of polymer networks through molecular motors. Nature, 416, 413–416.PubMedGoogle Scholar
  27. 27.
    Brangwynne, C. P., Eckmann, C. R., Courson, D. S., Rybarska, A., Hoege, C., Gharakhani, J., et al. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 324, 1729–1732.PubMedGoogle Scholar
  28. 28.
    Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387, 569–572.PubMedGoogle Scholar
  29. 29.
    Wang, S., Lee, J. S., Bishop, N., Jeremic, A., Cho, W. J., Chen, X., Mao, G., Taatjes, D. J., & Jena, B. P. (2012). 3D organization and function of the cell: Golgi budding and vesicle biogenesis to docking at the porosome complex. Histochemistry and Cell Biology, 137, 703–718.PubMedGoogle Scholar
  30. 30.
    Cho, S.-J., Kelly, M., Rognlien, K. T., Cho, J. A., Horber, J. K. H., & Jena, B. P. (2002). SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophysical Journal, 83, 2522–2527.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Cho, W.-J., Jeremic, A., & Jena, B. P. (2005). Size of supramolecular SNARE complex: Membrane-directed self-assembly. Journal of the American Chemical Society, 127, 10156–10157.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Jeremic, A., Quinn, A. S., Cho, W.-J., Taatjes, D. J., & Jena, B. P. (2006). Energy-dependent disassembly of self-assembled SNARE complex: Observation at nanometer resolution using atomic force microscopy. Journal of the American Chemical Society, 128, 26–27.PubMedGoogle Scholar
  33. 33.
    Shin, L., Cho, W.-J., Cook, J., Stemmler, T., & Jena, B. P. (2010). Membrane lipids influence protein complex assembly-disassembly. Journal of the American Chemical Society, 132, 5596–5597.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Cho, W. J., Lee, J.-S., Ren, G., Zhang, L., Shin, L., Manke, C. W., Potoff, J., Kotaria, N., Zhvania, M. G., & Jena, B. P. (2011). Membrane-directed molecular assembly of the neuronal SNARE complex. Journal of Cellular and Molecular Medicine, 15, 31–37.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Naik, A. R., Kuhn, E. R., Lewis, K. T., Kokotovich, K. M., Maddipati, K. R., Chen, X., Hörber, J. H. K., Taatjes, D. J., Potoff, J. J., & Jena, B. P. (2019). Self-assembly and biogenesis of the cellular membrane are dictated by membrane stretch and composition. The Journal of Physical Chemistry. B, 123, 6997–7005.PubMedGoogle Scholar
  36. 36.
    Jeremic, A., Kelly, M., Cho, J.-H., Cho, S.-J., Horber, J. K. H., & Jena, B. P. (2004). Calcium drives fusion of SNARE-apposed bilayers. Cell Biology International, 28, 19–31.PubMedGoogle Scholar
  37. 37.
    Bako, I., Hutter, J., & Palinkas, G. (2002). Car-Parrinello molecular dynamics simulation of the hydrated calcium ion. The Journal of Chemical Physics, 117, 9838–9843.Google Scholar
  38. 38.
    McIntosh, T. J. (2000). Short-range interactions between lipid bilayers measured by X-ray diffraction. Current Opinion in Structural Biology, 10, 481–485.PubMedGoogle Scholar
  39. 39.
    Portis, A., Newton, C., Pangborn, W., & Papahadjopoulos, D. (1979). Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+ phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry, 18, 780–790.PubMedGoogle Scholar
  40. 40.
    Jeremic, A., Cho, W. J., & Jena, B. P. (2004). Membrane fusion: What may transpire at the atomic level. Journal of Biological Physics and Chemistry, 4, 139–142.Google Scholar
  41. 41.
    Potoff, J. J., Issa, Z., Manke, C. W., Jr., & Jena, B. P. (2008). Ca2+-Dimethylphosphate complex formation: Providing insight into Ca2+ mediated local dehydration and membrane fusion in cells. Cell Biology International, 32, 361–366.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Weber, T., Zemelman, B. V., McNew, J. A., Westerman, B., Gmachi, M., Parlati, F., Söllner, T. H., & Rothman, J. E. (1998). SNAREpins: Minimal machinery for membrane fusion. Cell, 92, 759–772.PubMedGoogle Scholar
  43. 43.
    Rothman, J. E. (1994). Mechanisms of intracellular protein transport. Nature, 372, 55–63.PubMedGoogle Scholar
  44. 44.
    Lewis, K. T., Maddipati, K. R., Naik, A. R., & Jena, B. P. (2017). Unique lipid chemistry of synaptic vesicle and synaptosome membrane revealed using mass spectrometry. ACS Chemical Neuroscience, 8, 1163–1169.PubMedGoogle Scholar
  45. 45.
    Bogan, J. S., Xu, Y., & Hao, M. (2012). Cholesterol accumulation increases insulin granule size and impairs membrane trafficking. Traffic (Copenhagen, Denmark), 13, 1466–1480.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysiologyWayne State University School of MedicineDetroitUSA

Personalised recommendations