Skip to main content

Nuclear Pore: A Bidirectional Transport Machinery

  • Chapter
  • First Online:
Book cover Cellular Nanomachines

Abstract

The human nuclear pore complex is a 120 nm structure composed of nearly 1000 protein molecules (multiple copies of nearly 30 different proteins) with a mass of 110–120 MDa. It spans the double membrane of the nuclear envelope and selectively transports both proteins, nucleic acids, and small signaling molecules bidirectionally. The diameter of the channel in the nuclear pore complex is approximately 5 nm in diameter and 45 nm in depth. Selective transport through the nuclear pore complex is mediated by nuclear transport receptors that bind to the cargo to be transported. Importins mediate transport of cargo molecules into the nucleus, whereas exportins facilitate the selective transport of cargo out of the nucleus. Cargoes with a nucleus localization signal are efficiently transported into the nucleus through the nuclear pore complex. The import and export cycles require GTP hydrolysis, and thus the transport process through the nuclear pore complex is energy-dependent. Since the nuclear pore complex is the gateway to the genome, the number of nuclear pore complexes varies during the different stages of the cell cycle. For example, between G1 and G2 phase of the cell cycle, the number of nuclear pore complexes at the nuclear envelope increase to accommodate greater transcriptional demand. Assembly of the nuclear pore complex like other cellular nanomachines is little understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Callan, H. G., Randall, J. T., & Tomlin, S. G. (1949). An electron microscopy study of the nuclear membrane. Nature, 163, 280.

    Article  CAS  PubMed  Google Scholar 

  2. Callan, H. G., & Tomlin, S. G. (1950). Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proceedings of the Royal Society of London. Series B-Biological Sciences, 137, 367–378.

    Article  CAS  Google Scholar 

  3. Watson, M. L. (1959). Further observations on the nuclear envelope of the animal cell. The Journal of Biophysical and Biochemical Cytology, 6, 147–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gerace, L., Ottaviano, Y., & Kondor-Koch, C. (1982). Identification of a major polypeptide of the nuclear pore complex. The Journal of Cell Biology, 95, 826–837.

    Article  CAS  PubMed  Google Scholar 

  5. Davis, L. I., & Blobel, G. (1986). Identification and characterization of a nuclear pore complex protein. Cell, 45, 699–709.

    Article  CAS  PubMed  Google Scholar 

  6. Hinshaw, J. E., Carragher, B. O., & Milligan, R. A. (1992). Architecture and design of the nuclear pore complex. Cell, 69, 1133–1141.

    Article  CAS  PubMed  Google Scholar 

  7. Akey, C. W., & Radermacher, M. (1993). Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. The Journal of Cell Biology, 122, 1–19.

    Article  CAS  PubMed  Google Scholar 

  8. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T., & Matunis, M. J. (2002). Proteomic analysis of the mammalian nuclear pore complex. The Journal of Cell Biology, 158, 915–927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stoffler, D., Feja, B., Fahrenkrog, B., Walz, J., Typke, D., & Aebi, U. (2003). Cryo-electron tomography provides novel insights into nuclear pore architecture: Implications for nucleocytoplasmic transport. Journal of Molecular Biology, 328, 119–130.

    Article  CAS  PubMed  Google Scholar 

  10. Beck, M., Lucic, V., Forster, F., Baumeister, W., & Medalia, O. (2007). Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature, 449, 611–615.

    Article  CAS  PubMed  Google Scholar 

  11. Kosinski, J., Mosalaganti, S., von Appen, A., Teimer, R., DiGuilio, A. L., et al. (2016). Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 352, 363–365.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, S. J., Fernandez-Martinez, J., Nudelman, I., Shi, Y., Zhang, W., et al. (2018). Integrative structure and functional anatomy of a nuclear pore complex. Nature, 555, 475–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Forbes, D. J., Kirschner, M. W., & Newport, J. W. (1983). Spontaneous formation of nucleus-like structures around bacteriophage DNA microinjected into Xenopus eggs. Cell, 34(1), 13–23.

    Article  CAS  PubMed  Google Scholar 

  14. Lohka, M. J., & Masui, Y. (1984). Roles of cytosol and cytoplasmic particles in nuclear envelope assembly and sperm pronuclear formation in cell-free preparations from amphibian eggs. The Journal of Cell Biology, 98(4), 1222–1230.

    Article  CAS  PubMed  Google Scholar 

  15. Newmeyer, D. D., Finlay, D. R., & Forbes, D. J. (1986). In vitro transport of a fluorescent nuclear protein and exclusion of non-nuclear proteins. The Journal of Cell Biology, 103(6 Pt. 1), 2091–2102.

    Article  CAS  PubMed  Google Scholar 

  16. Newport, J. (1987). Nuclear reconstitution in vitro: Stages of assembly around protein-free DNA. Cell, 48(2), 205–217.

    Article  CAS  PubMed  Google Scholar 

  17. Newport, J., & Dunphy, W. (1992). Characterization of the membrane binding and fusion events during nuclear envelope assembly using purified components. The Journal of Cell Biology, 116(2), 295–306.

    Article  CAS  PubMed  Google Scholar 

  18. Kohler, A., & Hurt, E. (2010). Gene regulation by nucleoporins and links to cancer. Molecular Cell, 3, 6–15.

    Article  Google Scholar 

  19. Nousiainen, H. O., Kestila, M., Pakkasjarvi, N., Honkala, H., Kuure, S., Tallila, J., Vuopala, K., Ignatius, J., Herva, R., & Peltonen, L. (2008). Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nature Genetics, 40, 155–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Savas, J. N., Toyama, B. H., Xu, T., Yates, J. R., 3rd., & Hetzer, M. W. (2012). Extremely long-lived nuclear pore proteins in the rat brain. Science, 335, 942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boehmer, T., Jeudy, S., Berke, I. C., & Schwartz, T. U. (2008). Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Molecular Cell, 30, 721–731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brohawn, S. G., Leksa, N. C., Spear, E. D., Rajashankar, K. R., & Schwartz, T. U. (2008). Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science, 322, 1369–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Debler, E. W., Ma, Y., Seo, H. S., Hsia, K. C., Noriega, T. R., Blobel, G., & Hoelz, A. (2008). A fence-like coat for the nuclear pore membrane. Molecular Cell, 32, 815–826.

    Article  CAS  PubMed  Google Scholar 

  24. Brohawn, S. G., & Schwartz, T. U. (2009). Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice. Nature Structural & Molecular Biology, 16, 1173–1177.

    Article  CAS  Google Scholar 

  25. Cohen, S., Au, S., & Panté, N. (2011). How viruses access the nucleus. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, 1634–1645.

    Article  CAS  Google Scholar 

  26. Le Sage, V., & Mouland, A. J. (2013). Viral subversion of the nuclear pore complex. Viruses, 5, 2019–2042.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yarbrough, M. L., Mata, M. A., Sakthivel, R., & Fontoura, B. M. (2014). Viral subversion of nucleocytoplasmic trafficking. Traffic, 15, 127–140.

    Article  CAS  PubMed  Google Scholar 

  28. Lin, D. H., Zimmermann, S., Stuwe, T., Stuwe, E., & Hoelz, A. (2013). Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. Journal of Molecular Biology, 425, 1318–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schaller, T., Ocwieja, K. E., Rasaiyaah, J., Price, A. J., Brady, T. L., et al. (2011). HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathogens, 7, e1002439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bichel, K., Price, A. J., Schaller, T., Towers, G. J., Freund, S. M., & James, L. C. (2013). HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology, 10, 81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, B.P. (2020). Nuclear Pore: A Bidirectional Transport Machinery. In: Cellular Nanomachines. Springer, Cham. https://doi.org/10.1007/978-3-030-44496-9_6

Download citation

Publish with us

Policies and ethics