Advertisement

Ribosome: Cells Protein Synthetic Machinery

Chapter
  • 195 Downloads

Abstract

Ribosome is the translational apparatus in cells, serving as the protein synthetic machinery. Specified by mRNA, ribosomes link amino acids to form polypeptides. Ribosomes are composed of two subunits: a large and a small subunit. The small subunit reads the mRNA and the large subunit links amino acids to form polypeptides. Each subunit is composed of ribosomal RNA and ribosomal protein molecules; hence, it is a ribonucleoprotein. In protein synthesis, the small ribosomal subunit bound to an aminoacyl-tRNA binds to the start codon on the mRNA and recruits the large ribosomal subunit. At the inter-subunit region, ribosomes have three transfer RNA or tRNA binding sites: the A or aminoacyl site, the P or peptidyl site, and the E for the exit site. At the 30S small ribosome subunit, the mRNA binds to a track, moving in a stepwise manner, one codon at a time, resulting in peptide elongation and termination following completion of protein synthesis.

Keywords

Translational apparatus Ribosomal RNA Ribosomal proteins 

References

  1. 1.
    Claude, A. (1937). Properties of the causative agent of a chicken tumor: XIII. The Journal of Experimental Medicine, 66, 59–72.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Claude, A., & Rothen, A. (1940). Properties of the causative agent of a chicken tumor: XIV. The Journal of Experimental Medicine, 71, 619–633.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Claude, A. (1938). A fraction from normal chicken embryos similar to the tumor producing fraction of chicken tumors. Proceedings of the Society for Experimental Biology and Medicine, 39, 398.CrossRefGoogle Scholar
  4. 4.
    Claude, A. (1940). Particulate component of normal and tumor cells. Science, 91, 77.PubMedCrossRefGoogle Scholar
  5. 5.
    Claude, A. (1941). Particulate component of cytoplasm. Cold Spring Harbor Symposia on Quantitative Biology, 9, 263.CrossRefGoogle Scholar
  6. 6.
    Palade, G. E. (1955). A small particulate component of the cytoplasm. The Journal of Cell Biology, 1, 59–68.CrossRefGoogle Scholar
  7. 7.
    Palade, G. E. (1958). Microsomes and ribonucleoprotein particles. In R. B. Roberts (Ed.), Microsomal Particles and Protein Synthesis (pp. 36–61). London: Pergamon Press.Google Scholar
  8. 8.
    Roberts, R. B. (1958). Introduction. In Microsomal Particles and Protein Synthesis (pp. vii–viii). London: Pergamon Press.Google Scholar
  9. 9.
    Crick, F. H. C., & Brenner, S. (1959). Some footnotes on protein synthesis: Note for the RNA TIE club.Google Scholar
  10. 10.
    Brenner, S., & Crick, F. H. C. (1960). What are the properties of genetic RNA? https://profiles.nlm.nih.gov/ps/access/SCBBFZ.pdf.
  11. 11.
    Brenner, S., Jacob, F., & Meselson, M. (1961). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 190, 576–581.PubMedCrossRefGoogle Scholar
  12. 12.
    Shi, Z., Fujii, K., Kovary, K. M., Genuth, N. R., Rost, H. L., Teruel, M. N., & Barna, M. (2017). Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Molecular Cell, 67, 71–83.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Simsek, D., Tiu, G. C., Flynn, R. A., Byeon, G. W., Xu, A. F., Chang, H. Y., & Barnam, M. (2017). The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell, 169, 1051–1065.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Rodnina, M. V., Beringer, M., & Wintermeyer, W. (2007). How ribosomes make peptide bonds. Trends in Biochemical Sciences, 32, 20–26.PubMedCrossRefGoogle Scholar
  15. 15.
    Frank, J., Gao, H., Sengupta, J., Gao, N., & Taylor, D. J. (2007). The process of mRNA-tRNA translocation. Proceedings of the National Academy of Sciences, 104, 19671–19678.CrossRefGoogle Scholar
  16. 16.
    Karimi, R., Pavlov, M. Y., Buckingham, R. H., & Ehrenberg, M. (1999). Novel roles for classical factors at the interface between translation termination and initiation. Molecular Cell, 3, 601–609.PubMedCrossRefGoogle Scholar
  17. 17.
    Zavialov, A. V., Mora, L., Buckingham, R. H., & Ehrenberg, M. (2002). Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Molecular Cell, 10, 789–798.PubMedCrossRefGoogle Scholar
  18. 18.
    Yonath, A., Mussig, J., Tesche, B., Lorenz, S., Erdmann, V. A., & Wittmann, H. G. (1980). Crystallization of the large ribosomal subunits from Bacillus stearothermophilus. Biochemistry International, 1, 428–435.Google Scholar
  19. 19.
    Yonath, A., Bartunik, H. D., Bartels, K. S., & Wittmann, H. G. (1984). Some x-ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus. Journal of Molecular Biology, 177, 201–206.PubMedCrossRefGoogle Scholar
  20. 20.
    Shevack, A., Gewitz, H. S., Hennemann, B., Yonath, A., & Wittmann, H. G. (1985). Characterization and crystallization of ribosomal particles from Halobacterium marismortui. FEBS Letters, 184, 68–71.CrossRefGoogle Scholar
  21. 21.
    Frank, J., Zhu, J., Penczek, P., Li, Y., Srivastava, S., Verschoor, A., Radermacher, M., Grassucci, R., Lata, R. K., & Agrawal, R. K. (1995). A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature, 376, 441–444.PubMedCrossRefGoogle Scholar
  22. 22.
    Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., Frank, J., Moore, P. B., & Steitz, T. A. (1998). A 9 a resolution X-ray crystallographic map of the large ribosomal subunit. Cell, 93, 1105–1115.PubMedCrossRefGoogle Scholar
  23. 23.
    Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P. B., & Steitz, T. A. (1999). Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature, 400, 841–847.PubMedCrossRefGoogle Scholar
  24. 24.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., & Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science, 289, 905–920.PubMedCrossRefGoogle Scholar
  25. 25.
    Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., & Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature, 407, 327–339.PubMedCrossRefGoogle Scholar
  26. 26.
    Franceschi, F., & Duffy, E. M. (2006). Structure-based drug design meets the ribosome. Biochemical Pharmacology, 71, 1016–1025.PubMedCrossRefGoogle Scholar
  27. 27.
    Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., & Ramakrishnan, V. (2000). The structural basis for the action of the antibiotic tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell, 103, 1143–1154.PubMedCrossRefGoogle Scholar
  28. 28.
    Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., & Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 407, 340–348.PubMedCrossRefGoogle Scholar
  29. 29.
    Draptchinskaia, N., Gustavsson, P., Andersson, B., et al. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genetics, 21(2), 169–175.PubMedCrossRefGoogle Scholar
  30. 30.
    Liu, J. M., & Ellis, S. R. (2006). Ribosomes and marrow failure: Coincidental association or molecular paradigm? Blood, 107(12), 4583–4588.PubMedCrossRefGoogle Scholar
  31. 31.
    Ebert, B. L., Pretz, J., Bosco, J., et al. (2008). Identification of RPS14 as a 5q− syndrome gene by RNA interference screen. Nature, 451(7176), 335–339.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ganapathi, K. A., Austin, K. M., Lee, C. S., et al. (2007). The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA. Blood, 110(5), 1458–1465.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Rujkijyanont, P., Adams, S. L., Beyene, J., & Dror, Y. (2009). Bone marrow cells from patients with Shwachman-Diamond syndrome abnormally express genes involved in ribosome biogenesis and RNA processing. British Journal of Haematology, 145(6), 806–815.PubMedCrossRefGoogle Scholar
  34. 34.
    Treacher Collins Syndrome Collaborative Group. (1996). Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nature Genetics, 12(2), 130–136.CrossRefGoogle Scholar
  35. 35.
    Valdez, B. C., Henning, D., So, R. B., Dixon, J., & Dixon, M. J. (2004). The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10709–10714.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dixon, J., Jones, N. C., Sandell, L. L., et al. (2006). Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 103(36), 13403–13408.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jones, N. C., Lynn, M. L., Gaudenz, K., et al. (2008). Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nature Medicine, 14(2), 125–133.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysiologyWayne State University School of MedicineDetroitUSA

Personalised recommendations