Skip to main content

Ribosome: Cells Protein Synthetic Machinery

  • Chapter
  • First Online:
  • 381 Accesses

Abstract

Ribosome is the translational apparatus in cells, serving as the protein synthetic machinery. Specified by mRNA, ribosomes link amino acids to form polypeptides. Ribosomes are composed of two subunits: a large and a small subunit. The small subunit reads the mRNA and the large subunit links amino acids to form polypeptides. Each subunit is composed of ribosomal RNA and ribosomal protein molecules; hence, it is a ribonucleoprotein. In protein synthesis, the small ribosomal subunit bound to an aminoacyl-tRNA binds to the start codon on the mRNA and recruits the large ribosomal subunit. At the inter-subunit region, ribosomes have three transfer RNA or tRNA binding sites: the A or aminoacyl site, the P or peptidyl site, and the E for the exit site. At the 30S small ribosome subunit, the mRNA binds to a track, moving in a stepwise manner, one codon at a time, resulting in peptide elongation and termination following completion of protein synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Claude, A. (1937). Properties of the causative agent of a chicken tumor: XIII. The Journal of Experimental Medicine, 66, 59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Claude, A., & Rothen, A. (1940). Properties of the causative agent of a chicken tumor: XIV. The Journal of Experimental Medicine, 71, 619–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Claude, A. (1938). A fraction from normal chicken embryos similar to the tumor producing fraction of chicken tumors. Proceedings of the Society for Experimental Biology and Medicine, 39, 398.

    Article  CAS  Google Scholar 

  4. Claude, A. (1940). Particulate component of normal and tumor cells. Science, 91, 77.

    Article  CAS  PubMed  Google Scholar 

  5. Claude, A. (1941). Particulate component of cytoplasm. Cold Spring Harbor Symposia on Quantitative Biology, 9, 263.

    Article  CAS  Google Scholar 

  6. Palade, G. E. (1955). A small particulate component of the cytoplasm. The Journal of Cell Biology, 1, 59–68.

    Article  CAS  Google Scholar 

  7. Palade, G. E. (1958). Microsomes and ribonucleoprotein particles. In R. B. Roberts (Ed.), Microsomal Particles and Protein Synthesis (pp. 36–61). London: Pergamon Press.

    Google Scholar 

  8. Roberts, R. B. (1958). Introduction. In Microsomal Particles and Protein Synthesis (pp. vii–viii). London: Pergamon Press.

    Google Scholar 

  9. Crick, F. H. C., & Brenner, S. (1959). Some footnotes on protein synthesis: Note for the RNA TIE club.

    Google Scholar 

  10. Brenner, S., & Crick, F. H. C. (1960). What are the properties of genetic RNA? https://profiles.nlm.nih.gov/ps/access/SCBBFZ.pdf.

  11. Brenner, S., Jacob, F., & Meselson, M. (1961). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 190, 576–581.

    Article  CAS  PubMed  Google Scholar 

  12. Shi, Z., Fujii, K., Kovary, K. M., Genuth, N. R., Rost, H. L., Teruel, M. N., & Barna, M. (2017). Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. Molecular Cell, 67, 71–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simsek, D., Tiu, G. C., Flynn, R. A., Byeon, G. W., Xu, A. F., Chang, H. Y., & Barnam, M. (2017). The mammalian ribo-interactome reveals ribosome functional diversity and heterogeneity. Cell, 169, 1051–1065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodnina, M. V., Beringer, M., & Wintermeyer, W. (2007). How ribosomes make peptide bonds. Trends in Biochemical Sciences, 32, 20–26.

    Article  CAS  PubMed  Google Scholar 

  15. Frank, J., Gao, H., Sengupta, J., Gao, N., & Taylor, D. J. (2007). The process of mRNA-tRNA translocation. Proceedings of the National Academy of Sciences, 104, 19671–19678.

    Article  CAS  Google Scholar 

  16. Karimi, R., Pavlov, M. Y., Buckingham, R. H., & Ehrenberg, M. (1999). Novel roles for classical factors at the interface between translation termination and initiation. Molecular Cell, 3, 601–609.

    Article  CAS  PubMed  Google Scholar 

  17. Zavialov, A. V., Mora, L., Buckingham, R. H., & Ehrenberg, M. (2002). Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Molecular Cell, 10, 789–798.

    Article  CAS  PubMed  Google Scholar 

  18. Yonath, A., Mussig, J., Tesche, B., Lorenz, S., Erdmann, V. A., & Wittmann, H. G. (1980). Crystallization of the large ribosomal subunits from Bacillus stearothermophilus. Biochemistry International, 1, 428–435.

    CAS  Google Scholar 

  19. Yonath, A., Bartunik, H. D., Bartels, K. S., & Wittmann, H. G. (1984). Some x-ray diffraction patterns from single crystals of the large ribosomal subunit from Bacillus stearothermophilus. Journal of Molecular Biology, 177, 201–206.

    Article  CAS  PubMed  Google Scholar 

  20. Shevack, A., Gewitz, H. S., Hennemann, B., Yonath, A., & Wittmann, H. G. (1985). Characterization and crystallization of ribosomal particles from Halobacterium marismortui. FEBS Letters, 184, 68–71.

    Article  CAS  Google Scholar 

  21. Frank, J., Zhu, J., Penczek, P., Li, Y., Srivastava, S., Verschoor, A., Radermacher, M., Grassucci, R., Lata, R. K., & Agrawal, R. K. (1995). A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature, 376, 441–444.

    Article  CAS  PubMed  Google Scholar 

  22. Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., Frank, J., Moore, P. B., & Steitz, T. A. (1998). A 9 a resolution X-ray crystallographic map of the large ribosomal subunit. Cell, 93, 1105–1115.

    Article  CAS  PubMed  Google Scholar 

  23. Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P. B., & Steitz, T. A. (1999). Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature, 400, 841–847.

    Article  CAS  PubMed  Google Scholar 

  24. Ban, N., Nissen, P., Hansen, J., Moore, P. B., & Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science, 289, 905–920.

    Article  CAS  PubMed  Google Scholar 

  25. Wimberly, B. T., Brodersen, D. E., Clemons, W. M., Jr., Morgan-Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., & Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature, 407, 327–339.

    Article  CAS  PubMed  Google Scholar 

  26. Franceschi, F., & Duffy, E. M. (2006). Structure-based drug design meets the ribosome. Biochemical Pharmacology, 71, 1016–1025.

    Article  CAS  PubMed  Google Scholar 

  27. Brodersen, D. E., Clemons, W. M., Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., & Ramakrishnan, V. (2000). The structural basis for the action of the antibiotic tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell, 103, 1143–1154.

    Article  CAS  PubMed  Google Scholar 

  28. Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., & Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature, 407, 340–348.

    Article  CAS  PubMed  Google Scholar 

  29. Draptchinskaia, N., Gustavsson, P., Andersson, B., et al. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genetics, 21(2), 169–175.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, J. M., & Ellis, S. R. (2006). Ribosomes and marrow failure: Coincidental association or molecular paradigm? Blood, 107(12), 4583–4588.

    Article  CAS  PubMed  Google Scholar 

  31. Ebert, B. L., Pretz, J., Bosco, J., et al. (2008). Identification of RPS14 as a 5q− syndrome gene by RNA interference screen. Nature, 451(7176), 335–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ganapathi, K. A., Austin, K. M., Lee, C. S., et al. (2007). The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA. Blood, 110(5), 1458–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rujkijyanont, P., Adams, S. L., Beyene, J., & Dror, Y. (2009). Bone marrow cells from patients with Shwachman-Diamond syndrome abnormally express genes involved in ribosome biogenesis and RNA processing. British Journal of Haematology, 145(6), 806–815.

    Article  CAS  PubMed  Google Scholar 

  34. Treacher Collins Syndrome Collaborative Group. (1996). Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nature Genetics, 12(2), 130–136.

    Article  Google Scholar 

  35. Valdez, B. C., Henning, D., So, R. B., Dixon, J., & Dixon, M. J. (2004). The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10709–10714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dixon, J., Jones, N. C., Sandell, L. L., et al. (2006). Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 103(36), 13403–13408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jones, N. C., Lynn, M. L., Gaudenz, K., et al. (2008). Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nature Medicine, 14(2), 125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jena, B.P. (2020). Ribosome: Cells Protein Synthetic Machinery. In: Cellular Nanomachines. Springer, Cham. https://doi.org/10.1007/978-3-030-44496-9_5

Download citation

Publish with us

Policies and ethics