Advertisement

ATP Synthase: Energy Generating Machinery in Cells

Chapter
  • 226 Downloads

Abstract

ATP synthase is an enzyme that drives the formation of ATP from ADP and Pi. It is a molecular rotary motor composed of F1 and Fo subunits and couples ATP synthesis during cellular respiration to an electrochemical gradient created by differences in proton concentration across mitochondrial membranes. In the mitochondria, proton is pumped across the inner mitochondrial membrane as electrons traveled through the electron transport chain. This results in a proton gradient, lowering the pH in the intermembrane space and elevated pH in the mitochondrial matrix. The proton gradient and membrane potential are the proton motive force that drives ATP synthesis.

Keywords

Mitochondria ATP synthesis Rotary motor Electrochemical gradient Proton motive force Electron transport chain 

References

  1. 1.
    Pullman, M. E., Penefsky, H., & Racker, E. (1958). A soluble protein fraction required for coupling phosphorylation to oxidation in submitochondrial fragments of beef heart mitochondria. Archives of Biochemistry and Biophysics, 76, 227–230.CrossRefGoogle Scholar
  2. 2.
    Pullman, M. E., Penefsky, H. S., Datta, A., & Racker, E. (1960). Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase. The Journal of Biological Chemistry, 235, 3322–3329.PubMedGoogle Scholar
  3. 3.
    Penefsky, H. S., Pullman, M. E., Datta, A., & Racker, E. (1960). Partial resolution of the enzymes catalyzing oxidative phosphorylation II. Participation of a soluble adenosine triphosphatase in oxidative phosphorylation. Journal of Biological Chemistry, 235, 3330–3336.PubMedGoogle Scholar
  4. 4.
    Kagawa, Y., & Racker, E. (1966). Partial resolution of the enzymes catalyzing oxidative phosphorylation IX. Reconstruction of oligomycin-sensitive adenosine triphosphatase. Journal of Biological Chemistry, 241, 2467–2474.PubMedGoogle Scholar
  5. 5.
    Mitchell, P. (1961). Coupling of photophosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature, 191, 144–148.CrossRefGoogle Scholar
  6. 6.
    Mitchell, P. (1966). Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Physiological Reviews, 41, 445–502.Google Scholar
  7. 7.
    Racker, E., & Stoeckenius, W. (1974). Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. The Journal of Biological Chemistry, 249, 662–663.PubMedGoogle Scholar
  8. 8.
    Kayalar, C., Rosing, J., & Boyer, P. D. (1977). An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. The Journal of Biological Chemistry, 252, 2486–2491.PubMedGoogle Scholar
  9. 9.
    Boyer, P. D. (1977). Conformational coupling in oxidative phosphorylation and photophosphorylation. Trends in Biochemical Sciences, 2, 38–41.CrossRefGoogle Scholar
  10. 10.
    Boyer, P. D., & Kohlbrenner, W. E. (1981). The present status of the binding change mechanism and its relation to ATP formation by chloroplasts. In B. R. Selman & S. Selman-Reimer (Eds.), Energy coupling in photosynthesis (pp. 231–241). Amsterdam: Elsevier.Google Scholar
  11. 11.
    Rao, R., & Senior, A. E. (1987). The properties of hybrid F1-ATPase enzymes suggest that a cyclical catalytic mechanism involving three catalytic sites occurs. The Journal of Biological Chemistry, 25, 17450–17454.Google Scholar
  12. 12.
    Abrahams, J. P., Leslie, A. G., Lutter, R., & Walker, J. E. (1994). The structure of F1-ATPase from bovine heart mitochondria determined at 2.8 a resolution. Nature, 370, 621–628.CrossRefGoogle Scholar
  13. 13.
    Bowler, M. W., Montgomery, M. G., Leslie, A. G., & Walker, J. E. (2007). Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 a resolution. The Journal of Biological Chemistry, 282, 14238–14242.CrossRefGoogle Scholar
  14. 14.
    Noji, H., Yasuda, R., Yoshida, M., & Konisita, K., Jr. (1997). Direct observation of the rotation of F1-ATPase. Nature, 386, 299–302.CrossRefGoogle Scholar
  15. 15.
    Schneider, E., & Altendorf, K. (1985). All three subunits are required for the reconstitution of an active proton channel (FO) of Escherichia coli ATP synthase (F1FO). The EMBO Journal, 4, 515–518.CrossRefGoogle Scholar
  16. 16.
    Preiss, L., Yildiz, O., Hicks, D. B., Krulwich, T. A., & Meier, T. (2010). A new type of proton coordination in an F1FO-ATP synthase rotor ring. PLoS Biology, 8, e1000443.CrossRefGoogle Scholar
  17. 17.
    Runswick, M. J., Bason, J. V., Montgomery, M. G., Robinson, G. C., Fearnley, I. M., & Walker, J. E. (2013). The affinity purification and characterization of ATP synthase complexes from mitochondria. Open Biology, 3, 120160.CrossRefGoogle Scholar
  18. 18.
    Bason, J. V., Montgomery, M. G., Leslie, A. G., & Walker, J. E. (2014). Pathway of binding of the intrinsically disordered mitochondrial inhibitor protein to F1-ATPase. Proceedings of the National Academy of Sciences, 111, 11305–11310.CrossRefGoogle Scholar
  19. 19.
    Dimauro, S., & Schon, E. A. (2003). Mitochondrial respiratory-chain diseases. The New England Journal of Medicine, 348, 2656–2668.CrossRefGoogle Scholar
  20. 20.
    Zeviani, M., & Carelli, V. (2007). Mitochondrial disorders. Current Opinion in Neurology, 20, 564–571.CrossRefGoogle Scholar
  21. 21.
    Vafai, S. B., & Mootha, V. K. (2012). Mitochondrial disorders as windows into an ancient organelle. Nature, 491, 374–383.CrossRefGoogle Scholar
  22. 22.
    Housˇteˇk, J., Klement, P., Floryk, D., Antonicka, H., Hermanska, J., Kalous, M., Hansikova, H., Hout’kova, H., Chowdhury, S. K., Rosipal, T., et al. (1999). A novel deficiency of mitochondrial ATPase of nuclear origin. Human Molecular Genetics, 8, 1967–1974.CrossRefGoogle Scholar
  23. 23.
    Mracek, T., Pecina, P., Vojtiskova, A., Kalous, M., Sebesta, O., & Housˇteˇk, J. (2006). Two components in pathogenic mechanism of mitochondrial ATPase deficiency: Energy deprivation and ROS production. Experimental Gerontology, 41, 683–687.CrossRefGoogle Scholar
  24. 24.
    Zhang, A. T., Montgomery, M. G., Leslie, A. G. W., Cook, G. M., & Walker, J. E. (2019). The structure of the catalytic domain of the ATP synthase from Mycobacterium smegmatis is a target for developing antitubercular drugs. Proceedings of the National Academy of Sciences of the United States of America, 116, 4206–4211.CrossRefGoogle Scholar
  25. 25.
    World Health Organization. (2018). Global Tuberculosis Report 2018. Retrieved September 18, 2018 from https://www.who.int/tb/publications/global_report/en/
  26. 26.
    Houben, R. M., & Dodd, P. J. (2016). The global burden of latent tuberculosis infection: A re-estimation using mathematical modelling. PLoS Medicine, 13, e1002152.CrossRefGoogle Scholar
  27. 27.
    Behr, M. A., Edelstein, P. H., & Ramakrishnan, L. (2018). Revisiting the timetable of tuberculosis. BMJ, 362, k2738.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysiologyWayne State University School of MedicineDetroitUSA

Personalised recommendations