Porosome: Cells Secretory Nanomachine



Secretion is a highly regulated fundamental cellular process in living organisms, from yeast to cells in humans. Cellular cargoes such as neurotransmitters in neurons, insulin in beta cells of the endocrine pancreas, or digestive enzymes in the exocrine pancreas are all packaged and stored in membrane-bound secretory vesicles that dock and fuse at the cell plasma membrane to release their contents during secretion. The prevailing view was that secretory vesicles completely merge with the cell plasma membrane, emptying the entire vesicular contents outside the cell during secretion. However, accumulation of partially empty secretory vesicles observed in electron micrographs in cells following a secretory episode suggested fractional release of intra-vesicular contents during cell secretion. Given the high surface tension at the secretory vesicle membrane, fractional intra-vesicular content release during cell secretion could only be possible via a plasma membrane structure capable of preventing the complete merger or collapse of secretory vesicles into the cell plasma membrane. Cup-shaped plasma membrane-embedded lipoprotein structure called porosomes was first discovered in 1996 in live pancreatic acinar cells using atomic force microscopy (AFM) and subsequently confirmed in all cells examined including neurons using AFM, electron microscopy (EM), and solution X-ray. The porosome exhibits dynamics and its chemical composition demonstrates the utilization of energy in the form of both ATP and guanosine triphosphate (GTP), the participation of molecular motors, ion channels, and soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) membrane fusion proteins, among others. Porosomes are composed of nearly 30 proteins, as opposed to the 120 nm nuclear pore complex comprised of nearly 1000 protein molecules. Porosomes range in size from 15 nm in neurons and astrocytes to 100–180 nm in endocrine and exocrine cells. Porosome has been functionally reconstituted into artificial lipid membrane and in live cells. During secretion, secretory vesicles dock at the base of the porosome complex via v-SNARE proteins at the secretory vesicle membrane and t-SNARE proteins at the porosome base. In the presence of calcium, the v-SNARE and t-SNARE proteins in the opposing bilayers interact in a circular array to establish conducting channels or fusion pores. An increase in volume of the docked secretory vesicle via the rapid entry of ions and aquaporin-mediated rapid entry of water molecules results in increased intra-vesicular pressure, enabling the fractional release of vesicular contents from the cell with great precision. Collectively, these observations provide a molecular understanding of the fractional release of intra-vesicular contents via the transient or kiss-and-run mechanism of cell secretion. The discovery of the porosome and the molecular mechanism of its structure–function has resulted in a paradigm shift in our understanding of the secretory process in cells.


Cell secretion Porosome Secretory portal Fractional vesicle content release 


  1. 1.
    Jena, B. P. (2015). ‘Porosome’ discovered nearly 20 years ago provides molecular insights into the kiss-and-run mechanism of cell secretion. Journal of Cellular and Molecular Medicine, 19, 1427–1440. PMID 26033351.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Naik, A. R., Lewis, K. T., & Jena, B. P. (2015). The neuronal porosome complex in health and disease. Experimental Biology and Medicine (Maywood, N.J.), 241(2), 115–130. PMID 26264442.CrossRefGoogle Scholar
  3. 3.
    Hou, X., Lewis, K. T., Wu, Q., Wang, S., Chen, X., Flack, A., Mao, G., Taatjes, D. J., Sun, F., & Jena, B. P. (2013). Proteome of the porosome complex in human airway epithelia: Interaction with the cystic fibrosis transmembrane conductance regulator (CFTR). Journal of Proteomics, 96, 82–91. PMID 24220302.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ceccarelli, B., Hurlbut, W. P., & Mauro, A. (1973). Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. The Journal of Cell Biology, 57, 499–524.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Almers, W., & Tse, F. W. (1990). Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis? Neuron, 4, 813–818.PubMedGoogle Scholar
  6. 6.
    Monck, J. R., & Fernandez, J. M. (1992). The exocytotic fusion pore. The Journal of Cell Biology, 119, 1395–1404.PubMedGoogle Scholar
  7. 7.
    Neher, E. (1993). Secretion without full fusion. Nature, 363, 497–498.PubMedGoogle Scholar
  8. 8.
    Schneider, S. W., Sritharan, K. C., Geibel, J. P., Oberleithner, H., & Jena, B. P. (1997). Surface dynamics in living acinar cells imaged by atomic force microscopy: Identification of plasma membrane structures involved in exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 94, 316–321.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Cho, S.-J., Quinn, A. S., Stromer, M. H., Dash, S., Cho, J., Taatjes, D. J., & Jena, B. P. (2002). Structure and dynamics of the fusion pore in live cells. Cell Biology International, 26, 35–42.PubMedGoogle Scholar
  10. 10.
    Jena, B. P., Cho, S.-J., Jeremic, A., Stromer, M. H., & Abu-Hamdah, R. (2003). Structure and composition of the fusion pore. Biophysical Journal, 84, 1–7.Google Scholar
  11. 11.
    Cho, S.-J., Wakade, A., Pappas, G. D., & Jena, B. P. (2002). New structure involved in transient membrane fusion and exocytosis. Annals of the New York Academy of Sciences, 971, 254–256.PubMedGoogle Scholar
  12. 12.
    Cho, S.-J., Jeftinija, K., Glavaski, A., Jeftinija, S., Jena, B. P., & Anderson, L. L. (2002). Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology, 143, 1144–1148.PubMedGoogle Scholar
  13. 13.
    Jeremic, A., Kelly, M., Cho, S.-J., Stromer, M. H., & Jena, B. P. (2003). Reconstituted fusion pore. Biophysical Journal, 85, 2035–2043.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Naik, A. R., Kulkarni, S. P., Lewis, K. T., Taatjes, D. J., & Jena, B. P. (2016). Functional reconstitution of the porosome complex in live cells. Endocrinology, 157, 54–60.PubMedGoogle Scholar
  15. 15.
    Rajagopal, A., Kulkarni, S., Lewis, K. T., Chen, X., Maarouf, A., Kelly, C. V., Taatjes, D. J., & Jena, B. P. (2015). Proteome of the insulin-secreting Min6 porosome complex: Involvement of Hsp90 in its assembly and function. Journal of Proteomics, 114, 83–92.PubMedGoogle Scholar
  16. 16.
    Cho, W. J., Jeremic, A., Rognlien, K. T., Zhvania, M. G., Lazrishvili, I., Tamar, B., & Jena, B. P. (2004). Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biology International, 28, 699–708.PubMedGoogle Scholar
  17. 17.
    Cho, W. J., Jeremic, A., Jin, H., Ren, G., & Jena, B. P. (2007). Neuronal fusion pore assembly requires membrane cholesterol. Cell Biology International, 31, 1301–1308.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Cho, W. J., Ren, G., & Jena, B. P. (2008). EM 3D contour maps provide protein assembly at the nanoscale within the neuronal porosome complex. Journal of Microscopy, 232, 106–111.PubMedGoogle Scholar
  19. 19.
    Kovari, L. C., Brunzelle, J. S., Lewis, K. T., Cho, W. J., Lee, J.-S., Taatjes, D. J., & Jena, B. P. (2014). X-ray solution structure of the native neuronal porosome-synaptic vesicle complex: Implication in neurotransmitter release. Micron, 56, 37–43.PubMedGoogle Scholar
  20. 20.
    Lee, J.-S., Jeremic, A., Shin, L., Cho, W. J., Chen, X., & Jena, B. P. (2012). Neuronal Porosome proteome: Molecular dynamics and architecture. Journal of Proteomics, 75(3), 952–962.Google Scholar
  21. 21.
    Lee, J. S., Cho, W. J., Jeftinija, K., Jeftinija, S., & Jena, B. P. (2009). Porosome in astrocytes. Journal of Cellular and Molecular Medicine, 13, 365–372. Scholar
  22. 22.
    Cho, W. J., Ren, G., Lee, J. S., Jeftinija, K., Jeftinija, S., & Jena, B. P. (2009). Nanoscale 3D contour map of protein assembly within the astrocyte porosome complex. Cell Biology International, 33, 224–229. PMID 19084606.CrossRefPubMedGoogle Scholar
  23. 23.
    Oyler, G. A., Higgins, G. A., Hart, R. A., Battenberg, E., Billingsley, M., Bloom, F. E., & Wilson, M. C. (1989). The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. The Journal of Cell Biology, 109, 3039–3052.PubMedGoogle Scholar
  24. 24.
    Bennett, M. K., Calakos, N., & Schller, R. H. (1992). Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science, 257, 255–259.PubMedGoogle Scholar
  25. 25.
    Trimble, W. S., Cowan, D. W., & Scheller, R. H. (1988). VAMP-1: A synaptic vesicle-associated integral membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 85, 4538–4542.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Jeremic, A., Kelly, M., Cho, J.-H., Cho, S.-J., Horber, J. K. H., & Jena, B. P. (2004). Calcium drives fusion of SNARE-apposed bilayers. Cell Biology International, 28, 19–31.PubMedGoogle Scholar
  27. 27.
    Jeremic, A., Cho, W. J., & Jena, B. P. (2004). Membrane fusion: What may transpire at the atomic level. Journal of Biological Physics and Chemistry, 4, 139–142.Google Scholar
  28. 28.
    Potoff, J. J., Issa, Z., Manke, C. W., Jr., & Jena, B. P. (2008). Ca2+-Dimethylphosphate complex formation: Providing insight into Ca2+ mediated local dehydration and membrane fusion in cells. Cell Biology International, 32, 361–366.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Issa, Z., Manke, C. W., Jr., Jena, B. P., & Potoff, J. J. (2010). Ca2+ bridging of apposed phospholipid bilayer. The Journal of Physical Chemistry. B, 114, 13249–13254.PubMedGoogle Scholar
  30. 30.
    Ludtke, S. J., Baldwin, P. R., & Chiu, W. (1999). EMAN: Semiautomated software for high-resolution single-particle reconstructions. Journal of Structural Biology, 128, 82–97.PubMedGoogle Scholar
  31. 31.
    Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Lasjadj, M., & Leith, A. (1996). SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. Journal of Structural Biology, 116, 190–199.PubMedGoogle Scholar
  32. 32.
    Goddard, T. D., Huang, C. C., & Ferrin, T. E. (2005). Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. Structure, 13, 473–482.PubMedGoogle Scholar
  33. 33.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera - a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.PubMedGoogle Scholar
  34. 34.
    Cho, W.-J., Shin, L., Ren, G., & Jena, B. P. (2009). Structure of membrane-associated neuronal SNARE complex: Implication in neurotransmitter release. Journal of Cellular and Molecular Medicine, 13, 4161–4165.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Mohrmann, R., de Wit, H., Verhage, M., Neher, E., & Sørensen, J. B. (2010). Fast vesicle fusion in living cells requires atleast three SNARE complexes. Science, 330, 502–505.PubMedGoogle Scholar
  36. 36.
    Cho, W. J., Jeremic, A., & Jena, B. P. (2005). Direct interaction between SNAP-23 and L-type calcium channel. Journal of Cellular and Molecular Medicine, 9, 380–386.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cho, W.-J., Lee, J.-S., & Jena, B. P. (2010). Conformation states of the neuronal Porosome complex. Cell Biology International, 34, 1129–1132.PubMedGoogle Scholar
  38. 38.
    Lewis, K. T., Maddipati, K. R., Taatjes, D. J., & Jena, B. P. (2014). Neuronal Porosome Lipidome. Journal of Cellular and Molecular Medicine, 18, 1927–1937.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Nemhauser, I., & Goldberg, D. J. (1985). Structural effects in axoplasm of DNase I, an actin depolymerizer that blocks fast axonal transport. Brain Research, 334, 47–58.PubMedGoogle Scholar
  40. 40.
    Cole, J. C., Villa, B. R., & Wilkinson, R. S. (2000). Disruption of actin impedes transmitter release in snake motor terminals. The Journal of Physiology, 525(3), 579–586.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Klein, M. E., Younts, T. J., Castillo, P. E., & Jordan, B. A. (2013). RNA-binding protein Sam68 controls synapse number and local beta-actin mRNA metabolism in dendrites. Proceedings of the National Academy of Sciences USA, 110, 3125–3130.Google Scholar
  42. 42.
    Khanna, R., Zougman, A., & Stanley, E. F. (2007). A proteomic screen for presynaptic terminal N-type calcium channel (CaV2.2) binding partners. Journal of Biochemistry and Molecular Biology, 40, 302–314.PubMedGoogle Scholar
  43. 43.
    Khanna, R., Li, Q., Bewersdorf, J., & Stanley, E. F. (2007). The presynaptic CaV2.2 channel-transmitter release site core complex. The European Journal of Neuroscience, 26, 547–559.PubMedGoogle Scholar
  44. 44.
    Balestrino, M., Young, J., & Aitken, P. (1999). Block of (Na+,K+)ATPase with ouabain induces spreading depression-like depolarization in hippocampal slices. Brain Research, 838, 37–44.PubMedGoogle Scholar
  45. 45.
    Li, K. C., et al. (2011). Follistatin-like 1 suppresses sensory afferent transmission by activating Na+,K+-ATPase. Neuron, 69, 974–987.PubMedGoogle Scholar
  46. 46.
    Scuri, R., Lombardo, P., Cataldo, E., Ristori, C., & Brunelli, M. (2007). Inhibition of Na+/K+ ATPase potentiates synaptic transmission in tactile sensory neurons of the leech. The European Journal of Neuroscience, 25, 59–167.Google Scholar
  47. 47.
    Kim, J. H., Sizov, I., Dobretsov, M., & von Gersdorff, H. (2007). Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the alpha3 Na(+)/K(+)-ATPase. Nature Neuroscience, 10, 196–205.PubMedGoogle Scholar
  48. 48.
    Jensen, T. P., Filoteo, A. G., Knopfel, T., & Empson, R. M. (2007). Presynaptic plasma membrane Ca2+ ATPase isoform 2a regulates excitatory synaptic transmission in rat hippocampal CA3. The Journal of Physiology, 579, 85–99.PubMedGoogle Scholar
  49. 49.
    Garside, M. L., et al. (2009). Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum. Neuroscience, 162, 383–395.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Geerlings, A., Nunez, E., Lopez-Corcuera, B., & Aragon, C. (2001). Calcium- and syntaxin 1-mediated trafficking of the neuronal glycine transporter GLYT2. The Journal of Biological Chemistry, 276, 17584–17590.PubMedGoogle Scholar
  51. 51.
    de Juan-Sanz, J., et al. (2013). Na+/K+-ATPase is a new interacting partner for the neuronal glycine transporter GlyT2 that downregulates its expression in vitro and in vivo. The Journal of Neuroscience, 33, 14269–14281.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Empson, R. M., Akemann, W., & Knopfel, T. (2010). The role of the calcium transporter protein plasma membrane calcium ATPase PMCA2 in cerebellar Purkinje neuron function. Functional Neurology, 25, 153–158.PubMedGoogle Scholar
  53. 53.
    Dodson, H. C., & Charalabapoulou, M. (2001). PMCA2 mutation causes structural changes in the auditory system in deafwaddler mice. Journal of Neurocytology, 30, 281–292.PubMedGoogle Scholar
  54. 54.
    Iino, S., Kobayashi, S., & Maekawa, S. (1999). Immunohistochemical localization of a novel acidic calmodulin-binding protein, NAP-22, in the rat brain. Neuroscience, 91, 1435–1444.PubMedGoogle Scholar
  55. 55.
    Iino, S., & Maekawa, S. (1999). Immunohistochemical demonstration of a neuronal calmodulin-binding protein, NAP-22, in the rat spinal cord. Brain Research, 834, 66–73.PubMedGoogle Scholar
  56. 56.
    Yamamoto, Y., Sokawa, Y., & Maekawa, S. (1997). Biochemical evidence for the presence of NAP-22, a novel acidic calmodulin binding protein, in the synaptic vesicles of rat brain. Neuroscience Letters, 224, 127–130.PubMedGoogle Scholar
  57. 57.
    Freeman, N. L., & Field, J. (2000). Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly. Cell Motility and the Cytoskeleton, 45, 106–120.PubMedGoogle Scholar
  58. 58.
    Zhang, H., Ghai, P., Wang, C., Field, J., & Zhou, G. L. (2013). Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion. The Journal of Biological Chemistry, 288, 20966–20977.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Sultana, R., Boyd-Kimball, D., Cai, J., Pierce, W. M., Klein, J. B., Merchant, M., & Butterfield, D. A. (2007). Proteomics analysis of the Alzheimer’s disease hippocampal proteome. Journal of Alzheimer’s Disease, 11, 153–164.PubMedGoogle Scholar
  60. 60.
    Vlkolinsky, R., Cairns, N., Fountoulakis, M., & Lubec, G. (2001). Decreased brain levels of 2′,3′-cyclic nucleotide-3′-phosphodiesterase in down syndrome and Alzheimer’s disease. Neurobiology of Aging, 22, 547–553.PubMedGoogle Scholar
  61. 61.
    Reinikainen, K. J., Pitkanen, A., & Riekkinen, P. J. (1989). 2′,3′-cyclic nucleotide-3′-phosphodiesterase activity as an index of myelin in the post-mortem brains of patients with Alzheimer’s disease. Neuroscience Letters, 106, 229–232.PubMedGoogle Scholar
  62. 62.
    Flynn, S. W., et al. (2003). Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Molecular Psychiatry, 8, 811–820.PubMedGoogle Scholar
  63. 63.
    Peirce, T. R., et al. (2006). Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Archives of General Psychiatry, 63, 18–24.PubMedGoogle Scholar
  64. 64.
    Mikoshiba, K., Aoki, E., & Tsukada, Y. (1980). 2′-3′-cyclic nucleotide 3′-phosphohydrolase activity in the central nervous system of a myelin deficient mutant (Shiverer). Brain Research, 192, 195–204.PubMedGoogle Scholar
  65. 65.
    Zhao, Y. Y., Shi, X. Y., Qui, X., Zhang, L., Lu, W., Yang, S., Lee, C., Cheng, G. H., Yang, Z. W., & Tang, Y. (2011). Enriched environment increases the total number of CNPase positive cells in the corpus callosum of middle-aged rats. Acta Neurobiologiae Experimentalis, 71, 322–330.PubMedGoogle Scholar
  66. 66.
    Sinclair, L. I., Tayler, H. M., & Love, S. (2015). Synaptic protein levels altered in vascular dementia. Neuropathology and Applied Neurobiology, 41, 533–543.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Mukaetova-Ladinska, E. B., Xuereb, J. H., Garcia-Sierra, F., Hurt, J., Gertz, H. J., Hills, R., Brayne, C., Huppert, F. A., Paykel, E. S., McGee, M. A., Jakes, R., Honer, W. G., Harrington, C. R., & Wischik, C. M. (2009). Lewy body variant of Alzheimer’s disease: Selective neocortical loss of t-SNARE proteins and loss of MAP 2 and alpha-synuclein in medial temporal lobe. The Scientific World Journal, 9, 1463–1475.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Greber, S., Lubec, G., Cairns, N., & Fountoulakis, M. (1999). Decreased levels of synaptosomal associated protein 25 in the brain of patients with down syndrome and Alzheimer’s disease. Electrophoresis, 20, 928–934.PubMedGoogle Scholar
  69. 69.
    Corradini, I., Donzelli, A., Antonucci, F., Welzl, H., Loos, M., Martucci, R., De Astis, S., Pattini, L., Inverardi, F., Wolfer, D., Caleo, M., Bozzi, Y., Verderio, C., Frassoni, C., Braida, D., Clerici, M., Lipp, H. P., Sala, M., & Matteoli, M. (2014). Epileptiform activity and cognitive deficits in SNAP-25 (+/−) mice are normalized by antiepileptic drugs. Cerebral Cortex, 24, 364–376.PubMedGoogle Scholar
  70. 70.
    McKee, A. G., Loscher, J. S., O’Sullivan, N. C., Chadderton, N., Palfi, A., Batti, L., Sheridan, G. K., O’Shea, S., Moran, M., McCabe, O., Fernandez, A. B., Pangalos, M. N., O’Connor, J. J., Regan, C. M., O’Connor, W. T., Humphries, P., Farrar, G. J., & Murphy, K. J. (2010). AAV-mediated chronic over-expression of SNAP-25 in adult rat dorsal hippocampus impairs memory-associated synaptic plasticity. Journal of Neurochemistry, 112, 991–1004.PubMedGoogle Scholar
  71. 71.
    Smith, R., Klein, P., Koc-Schmitz, Y., Waldvogel, H. J., Faull, R. L., Brundin, P., Plomann, M., & Li, J. Y. (2007). Loss of SNAP-25 and rabphilin 3a in sensory-motor cortex in Huntington’s disease. Journal of Neurochemistry, 103, 115–123.PubMedGoogle Scholar
  72. 72.
    Jeans, A. F., Oliver, P. L., Johnson, R., Capogna, M., Vikman, J., Molnar, Z., Babbs, A., Partridge, C. J., Salehi, A., Bengtsson, M., Eliasson, L., Rorsman, P., & Davies, K. E. (2007). A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the blind-drunk mouse. Proceedings of the National Academy of Sciences of the United States of America, 104, 2431–2436.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Scarr, E., Gray, L., Keriakous, D., Robinson, P. J., & Dean, B. (2006). Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disorders, 8, 133–143.PubMedGoogle Scholar
  74. 74.
    Cao, F., Hata, R., Zhu, P., Niinobe, M., & Sakanaka, M. (2009). Up-regulation of syntaxin1 in ischemic cortex after permanent focal ischemia in rats. Brain Research, 1272, 52–61.PubMedGoogle Scholar
  75. 75.
    Wu, M. N., Fergestad, T., Lloyd, T. E., He, Y., Broadie, K., & Bellen, H. J. (1999). Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron, 23, 593–605.PubMedGoogle Scholar
  76. 76.
    Lagow, R. D., Bao, H., Cohen, E. N., Daniels, R. W., Zuzek, A., Williams, W. H., Macleod, G. T., Sutton, R. B., & Zhang, B. (2007). Modification of a hydrophobic layer by a point mutation in syntaxin 1A regulates the rate of synaptic vesicle fusion. PLoS Biology, 5, e72.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Chapman, E. R., An, S., Edwardson, J. M., & Jahn, R. (1996). A novel function for the second C2 domain of synaptotagmin. Ca2+−triggered dimerization. The Journal of Biological Chemistry, 271, 5844–5849.PubMedGoogle Scholar
  78. 78.
    Zhang, X., Kim-Miller, M. J., Fukuda, M., Kowalchyk, J. A., & Martin, T. F. (2002). Ca2+−dependent synaptotagmin binding to SNAP-25 is essential for Ca2+−triggered exocytosis. Neuron, 34, 599–611.PubMedGoogle Scholar
  79. 79.
    Japaridze, N. J., Okuneva, V. G., Qsovreli, M. G., Surmava, A. G., Lordkipanidze, T. G., Kiladze, M., & Zhvania, M. G. (2012). Hypokinetic stress and neuronal porosome complex in the rat brain: The electron microscopic study. Micron, 43(9), 948–963.PubMedGoogle Scholar
  80. 80.
    Okuneva, V. G., Japarodze, N. J., Kotaria, N. T., & Zhvania, M. G. (2012). Neuronal porosome in the rat and cat brain. Tsitologiia, 54, 210–215.Google Scholar
  81. 81.
    Zhvania, M.G., Japaridze, N.J., Qsovreli, M.G., Okuneva, V.G., Surmava, A.G., Lordkipanidze, T.G. (2014) The neuronal porosome complex in mammalian brain: A study using electron microscope. NanoCellBiology: Multimodal imaging in biology and medicine. Bhanu P Jena and Douglas J Taajes. Pan Stanford Publishing Pre. Ltd. Boca Raton, FL.Google Scholar
  82. 82.
    Zhvania, M. G., Japaridze, N. J., & Ksovreli, M. (2014). Effect of different forms of hypokinesia on the ultrastructure of limbic, extrapyramidal and neocortical areas of the rat brain: Electron microscopic study. Proceedings of Physics, 15, 21–16. Springer International Publishing Switzerland.Google Scholar
  83. 83.
    Zhvania, M. G., Bikashvili, T. Z., Japaridze, N. J., Lazrishvili, I. I., & Ksovreli, M. (2014). White noise and neuronal porosome complex: Transmission electron microscopic study. Discoveries Jul-Sep, 2(3), e25.Google Scholar
  84. 84.
    Eggermont, J. J. (2008). The role of sound in adult and developmental auditory cortical plasticity. Ear and Hearing, 6, 819–829.Google Scholar
  85. 85.
    Zhu, X., Wang, F., Hu, H., Sun, X., Kilgard, M. P., Merzenich, M. M., & Zhou, X. (2014). Environmental acoustic enrichment promotes recovery from developmentally degraded auditory cortical processing. The Journal of Neuroscience, 34(16), 5406–5415.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Soderlind, G. B. W., Sikstrom, S., & Sonuga-Narke, E. J. (2010). The effects of background white noise on memory performance in inattentive school children. Behavioral and Brain Functions, 6, 55–55.Google Scholar
  87. 87.
    Cheng, L., Wang, S. H., Chen, Q. C., & Liao, X. M. (2011). Moderate noise induced cognition impairment of mice and its underlying mechanisms. Physiology & Behavior, 104(5), 981–988.Google Scholar
  88. 88.
    Rausch, V. H., Bauch, E. M., & Bunzeck, N. (2014). White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus. Journal of Cognitive Neuroscience, 7, 1469–1480.Google Scholar
  89. 89.
    Wang, X., Jen, P. H., Wu, F. J., & Chen, Q. C. (2007). Preceding weak noise sharpens the frequency tuning and elevates the response threshold of the mouse inferior collicular neurons through GABAergic inhibition. Brain Research, 1167, 80–91.PubMedGoogle Scholar
  90. 90.
    Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., et al. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39, D561–D568.PubMedGoogle Scholar
  91. 91.
    Shin, L., Cho, W.-J., Cook, J., Stemmler, T., & Jena, B. P. (2010). Membrane lipids influence protein complex assembly-disassembly. Journal of the American Chemical Society, 132, 5596–5597.PubMedPubMedCentralGoogle Scholar
  92. 92.
    de Jong, A. P. H., Roggero, C. M., Ho, M. R., Wong, M. Y., Brautigam, C. A., Rizo, J., & Kaeser, P. S. (2018). RRIM C2B domains target presynaptic active zone functions to PIP2-containing membranes. Neuron, 98, 335–349.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Sutton, R. B., Fasshauer, D., Jahn, R., & Brunger, A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature, 395, 347–353.PubMedGoogle Scholar
  94. 94.
    Cho, S.-J., Kelly, M., Rognlien, K. T., Cho, J. A., Horber, J. K. H., & Jena, B. P. (2002). SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophysical Journal, 83, 2522–2527.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Cho, W.-J., Jeremic, A., & Jena, B. P. (2005). Size of supramolecular SNARE complex: Membrane-directed self-assembly. Journal of the American Chemical Society, 127, 10156–10157.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Jeremic, A., Quinn, A. S., Cho, W.-J., Taatjes, D. J., & Jena, B. P. (2006). Energy-dependent disassembly of self-assembled SNARE complex: Observation at nanometer resolution using atomic force microscopy. Journal of the American Chemical Society, 128, 26–27.PubMedGoogle Scholar
  97. 97.
    Cook, J. D., Cho, W. J., Stemmler, T. L., & Jena, B. P. (2008). Circular dichroism (CD) spectroscopy of the assembly and disassembly of SNAREs: The proteins involved in membrane fusion in cells. Chemical Physics Letters, 462, 6–9.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Cho, W. J., Lee, J.-S., Ren, G., Zhang, L., Shin, L., Manke, C. W., Potoff, J., Kotaria, N., Zhvania, M. G., & Jena, B. P. (2011). Membrane-directed molecular assembly of the neuronal SNARE complex. Journal of Cellular and Molecular Medicine, 15, 31–37.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Weber, T., Zemelman, B. V., McNew, J. A., Westerman, B., Gmachi, M., Parlati, F., Söllner, T. H., & Rothman, J. E. (1998). SNAREpins: Minimal machinery for membrane fusion. Cell, 92, 759–772.PubMedGoogle Scholar
  100. 100.
    Megighian, A., Scorzeto, M., Zanini, D., Pantano, S., Rossetto, O., Montecucco, C., & Zordan, M. (2010). Arg206 of SNAP-25 is essential for neuroexocytosis at the Drosophila melanogaster neuromuscular junction. Journal of Cell Science, 123, 3276–3283.PubMedGoogle Scholar
  101. 101.
    Hammel, I., & Meilijson, I. (2013). Function suggests nano-structure: Toward a unifying theory for secretion rate, a statistical mechanics approach. Journal of Royal Society Interface, 10, 20130640. Scholar
  102. 102.
    Alverez de Toledo, G., Fernandez-Chacon, R., & Fernandez, J. M. (1991). Release of vesicle products during transient vesicle fusion. Nature, 363, 554–558.Google Scholar
  103. 103.
    Monck, J. R., Oberhauser, A. F., Alvarez de Toledo, G., & Fernandez, J. M. (1991). Is swelling of the secretory granule matrix the force that dilates the exocytotic fusion pore? Biophysical Journal, 59, 39–47.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Jena, B. P., Schneider, S. W., Geibel, J. P., Webster, P., Oberleithner, H., & Sritharan, K. C. (1997). Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 94, 13317–13322.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Kelly, M., Cho, W.-J., Jeremic, A., Abu-Hamdah, R., & Jena, B. P. (2004). Vesicle swelling regulates content expulsion during secretion. Cell Biology International, 28, 709–716.PubMedGoogle Scholar
  106. 106.
    Cho, S.-J., Sattar, A. K. M., Jeong, E.-H., Satchi, M., Cho, J., Dash, S., Mayes, M. S., Stromer, M. H., & Jena, B. P. (2002). Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proceedings of the National Academy of Sciences of the United States of America, 99, 4720–4724.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Jeremic, A., Cho, W.-J., & Jena, B. P. (2005). Involvement of water channels in synaptic vesicle swelling. Experimental Biology and Medicine, 230, 674–680.PubMedGoogle Scholar
  108. 108.
    Shin, L., Basi, N., Lee, J.-S., Cho, W.-J., Chen, Z., Abu-Hamdah, R., Oupicky, D., & Jena, B. P. (2010). Involvement of vH+-ATPase in synaptic vesicle swelling. Journal of Neuroscience Research, 88, 95–101.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Lee, J.-S., Cho, W.-J., Shin, L., & Jena, B. P. (2010). Involvement of cholesterol in synaptic vesicle swelling. Experimental Biology and Medicine, 235, 470–477.PubMedGoogle Scholar
  110. 110.
    Chen, Z.-H., Lee, J.-S., Shin, L., Cho, W.-J., & Jena, B. P. (2011). Involvement of β-adrenergic receptor in synaptic vesicle swelling and implication in neurotransmitter release. Journal of Cellular and Molecular Medicine, 15, 572–576.PubMedGoogle Scholar
  111. 111.
    Kelly, M., Abu-Hamdah, R., Cho, S.-J., Ilie, A. L., & Jena, B. P. (2005). Patch clamped single pancreatic zymogen granules: Direct measurement of ion channel activities at the granule membrane. Pancreatology, 5, 443–449.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysiologyWayne State University School of MedicineDetroitUSA

Personalised recommendations