Skip to main content

Methods and Models for Information Data Analysis

  • Chapter
  • First Online:
Diagnostic Systems For Energy Equipments

Abstract

The article presents the definition of linear random processes of many of their stochastic characteristics such as moments, correlation functions, characteristic functions. Linear AR and ARMA processes are also considered. Kernels and characteristic functions of the random processes are represented for the processes. Not only stationary linear random processes are considered. Linear random processes with periodic structures are also discussed. The properties of kernels and the characteristic functions of such processes are shown. Cases of both non-stationary random processes with continuous time and random processes with discrete time are considered. Random processes with discrete time and periodic structures are linear AR and ARMA processes with periodic kernels and periodic generating processes. The properties of the kernels of linear AR and ARMA which are important for the practical use of such models are also presented. Method of forecasting the time of failure using statistical spline-function is considered. The estimation of random signals stationarity with practical examples of the estimation stationarity of vibration signals of rolling bearings is also discussed. A procedure of decision-making rule development for the vibration signals is represented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pugachev, V.S.: Probability Theory and Mathematical Statistics for Engineers (1984). ISBN 978-0-08-029148-2

    Google Scholar 

  2. Sinha, N.K., Telksnys, L.A.: Stochastic Control: Proceedings of the 2nd IFAC Symposium (1986). ISBN 978-0080334523

    Google Scholar 

  3. Zvaritch, V., Mislovitch, M., Martchenko, B.: White noise in information signal models. Appl. Math. Lett. 3(7), 93–95 (1994). https://doi.org/10.1016/0893-9659(94)90120-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Krasilnikov, A.I. Models of noise-type signals at the heat-and-power equipment diagnostic systems (2014)

    Google Scholar 

  5. Zvaritch, V., Glazkova, E.: Some singularities of kernels of linear AR and ARMA processes and their application to simulation of information signals. Comput. Prob. Electr. Eng. 1(5), 71–74 (2015)

    Google Scholar 

  6. Capehart, B.L.: Information Technology for Energy Managers (2004). ISBN 978-0824746179

    Google Scholar 

  7. Marchenko, B., Zvaritch, V., Bedniy, N.: Linear random processes in some problems of information signal simulation. Electron Model 1(23), 62–69 (2001)

    Google Scholar 

  8. Zvaritch, V.N., Marchenko, B.G.: Generating process characteristic function in the model of stationary linear AR-gamma process. Izvestiya Vysshikh Zavedenij Radioelectronika 8(45), 12–18 (2002)

    Google Scholar 

  9. Zvaritch, V., Glazkova, E.: Application of linear AR and ARMA processes for simulation of power equipment diagnostic systems information signals. In: 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE), pp. 259–261 (2015). Lviv, Ukraine, Sept 2–5. https://doi.org/10.1109/cpee.2015.7333392

  10. Zvaritch, V., Myslovitch, M., Martchenko, B.: The models of random periodic information signals on the white noise bases. Appl. Math. Lett. 3(8), 87–89 (1995). https://doi.org/10.1016/0893-9659(95)00035-O

    Article  MathSciNet  MATH  Google Scholar 

  11. Javorskyj, L., Isayev, I., Majewski, J., Yuzefovych, R.: Component covariance analysis for periodically correlated random processes. Sig. Process. 4(90), 1083–1102 (2010). https://doi.org/10.1016/j.sigpro.2009.07.031

    Article  MATH  Google Scholar 

  12. Antoni, J., Guillet, F., Badaoui, M.E., Bonnardot, F.: Blind separation of convolved cyclostationary processes. Signal Process. 1(85), 51–66 (2005). https://doi.org/10.1016/j.sigpro.2004.08.014

  13. Hurd, H., Makagon, A., Miamee, A.G.: On AR(1) models with periodic and almost periodic coefficients. Stoch. Process. Appl. 1–2(100), 167–185 (2002). https://doi.org/10.1016/S0304-4149(02)00094-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Quinn, B.G.: Statistical methods of spectrum change detection. Digit. Signal Proc. 5(16), 588–596 (2006). https://doi.org/10.1016/j.dsp.2004.12.011

    Article  Google Scholar 

  15. Quinn, B.G.: Recent advances in rapid frequency estimation. Digit. Signal Proc. 6(19), 942–948 (2009). https://doi.org/10.1016/j.dsp.2008.04.004

    Article  Google Scholar 

  16. Nakamori, S.: Design of extended recursive Wiener fixed-point smoother and filter in discrete-time stochastic systems. Digit. Signal Proc. 1(17), 360–370 (2007). https://doi.org/10.1016/j.dsp.2006.03.004

    Article  Google Scholar 

  17. Labarre, D., Grivel, E., Berthoumieu, Y., Todini, E., Najim, M.: Consistent estimation of autoregressive parameters from noisy observations based on two interacting Kalman filters. Sig. Process. 10(86), 2863–2876 (2006). https://doi.org/10.1016/j.sigpro.2005.12.001

    Article  MATH  Google Scholar 

  18. Zvarich, V.N., Marchenko, B.G.: Linear autoregressive processes with periodic structures as models of information signals. Radioelectron. Commun. Syst. 7(54), 367–372 (2011). https://doi.org/10.3103/S0735272711070041

    Article  Google Scholar 

  19. Zvarich, V.N.: Peculiarities of finding characteristic functions of the generating process in the model of stationary linear AR(2) process with negative binomial distribution. Radioelectron. Commun. Syst. 12(59), 567–573 (2016). https://doi.org/10.3103/S0735272716120050

    Article  Google Scholar 

  20. Myslovich, M., Sysak, R., Khimjuk, I., Ulitko, O.: Forecasting of electrical equipment failures with usage of statistical spline-functions. In: 7th International Workshop “Computational Problems of Electrical Engineering” (2006)

    Google Scholar 

  21. Butsan, G.P.: Introduction to Probability Theory (2012). ISBN 978-966-360-209-7

    Google Scholar 

  22. Zhan, Y., Mechefske, C.K.: Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov-Smirnov test statistic—Part I: Compromised autoregressive modeling with the aid of hypothesis tests and simulation analysis. Mech. Syst. Signal Process. 5(21), 1953–1982 (2007). https://doi.org/10.1016/j.ymssp.2006.11.005

  23. Zhan, Y., Mechefske, C.K.: Robust detection of gearbox deterioration using compromised autoregressive modeling and Kolmogorov–Smirnov test statistic. Part II: Experiment and application. Mech. Syst. Signal Process. 5(21), 1983–2011 (2007). https://doi.org/10.1016/j.ymssp.2006.11.006

  24. Bolshov, L.N., Smirnov, N.V.: Mathematical Statistics Tables (1983)

    Google Scholar 

  25. Kaźmierkowski M. P., Krishnan R., Blaabjerg F.: Control in power electronics: selected problems (2002)

    Google Scholar 

  26. Lopez, M.A.A., Flores, C.H., Garcia, E.G.: An intelligent tutoring system for turbine startup training of electrical power plant operators. Expert Syst. Appl. 1(24), 95–101 (2003). https://doi.org/10.1016/S0957-4174(02)00087-8

    Article  Google Scholar 

  27. Zvaritch, V.N., Malyarenko, A.P., Myslovitch, M.V., Martchenko, B.G.: Application of the statistical splines for prediction of radionuclide accumulation in living organisms. Fresenius Environ. Bull. 9(3), 563–568 (1994)

    Google Scholar 

  28. Axelrod, A., Chowdhary, G.: The explore–exploit dilemma in nonstationary decision making under uncertainty. In: Busoniu L., Tamás L. (eds.) Handling Uncertainty and Networked Structure in Robot Control. Studies in Systems, Decision and Control, vol. 42, pp. 29–52 (2016). https://doi.org/10.1007/978-3-319-26327-4_2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii P. Babak .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M. (2020). Methods and Models for Information Data Analysis. In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-030-44443-3_2

Download citation

Publish with us

Policies and ethics