Skip to main content

Principles of Construction of Systems for Diagnosing the Energy Equipment

  • Chapter
  • First Online:
Diagnostic Systems For Energy Equipments

Abstract

The generalized principles of building information-measuring systems (IMS) designed to measure diagnostic signals of different physical nature (vibrational, acoustic, acoustic emission, thermal, electrical, etc.) that arise in operating electric power equipment are considered. The main diagnostic parameters that can be used as diagnostic features to determine the technical condition of various units of electric power equipment are analyzed. The main components that form the information support of the IMS of diagnostics of electric power equipment are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babak, S.V., Myslovych, M.V., Sysak, R.M.: Statistical diagnostics of electrical equipment (2015). ISBN 978-966-02-7704-5

    Google Scholar 

  2. Babak, V.P.: Hardware-software for monitoring the objects of generation, transportation and consumption of thermal energy (2016). ISBN 978-966-02-7967-4

    Google Scholar 

  3. Zaporozhets, A.A., Eremenko, V.S., Serhiienko, R.V., Ivanov, S.A.: Development of an intelligent system for diagnosing the technical condition of the heat power equipment. In: IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), pp. 48–51 (2018). https://doi.org/10.1109/stc-csit.2018.8526742

  4. Zaporozhets, A., Eremenko, V., Isaenko, V., Babikova, K.: Approach for creating reference signals for detecting defects in diagnosing of composite materials. In: Shakhovska, N., Medykovskyy, M. (eds.) Advances in Intelligent Systems and Computing IV. Springer, Cham, vol. 1080, pp. 154–172 (2020). https://doi.org/10.1007/978-3-030-33695-0_12

  5. Czichos, H.: Handbook of Technical Diagnostics. Fundamentals and Application to Structures and Systems (2013). ISBN 978-3-642-25850-3

    Google Scholar 

  6. Babak, V.P.: Information support for monitoring of thermal power facilities (2015). ISBN 978-966-02-7478-5

    Google Scholar 

  7. Stognii, B., Kyrylenko, O., Butkevych, O., Sopel, M.: Information support of problems of electric power systems control. Energy Econ. Technol. Ecol. 1(30), 13–22 (2012)

    Google Scholar 

  8. Edwards, S., Lees, A.W., Friswell, M.I.: Fault diagnosis of rotating machinery. Shock. Vib. Dig. 1(30), 4–13 (1998)

    Article  Google Scholar 

  9. Zaporozhets, A., Eremenko, V., Serhiienko, R., Ivanov, S.: Methods and hardware for diagnosing thermal power equipment based on smart grid technology. In: Shakhovska, N., Medykovskyy, M. (eds.) Advances in Intelligent Systems and Computing III. Springer, Cham, vol. 871, pp. 476–489 (2019). https://doi.org/10.1007/978-3-030-01069-0_34

  10. Zaporozhets, A.: analysis of control system of fuel combustion in boilers with oxygen sensor. Period. Polytech. Mech. Eng. 64(4), 241–248 (2019). https://doi.org/10.3311/PPme.12572

  11. Napolitano, A.: Generalizations of Cyclostationary Signal Processing: Spectral Analysis and Applications (2012). ISBN 9781119973355

    Google Scholar 

  12. Yatsuk, V., Mykyizhuk, M., Bubela, T.: Ensuring the measurement efficiency in dispersed measuring systems for energy objects. In: Królczyk, G., Wzorek, M., Król, A., Kochan, O., Su, J., Kacprzyk, J. (eds.) Sustainable Production: Novel Trends in Energy, Environment and Material Systems. Studies in Systems, Decision and Control, vol. 198, pp. 131–149 (2020). https://doi.org/10.1007/978-3-030-11274-5_9

  13. Chen, P., Taniguchi, M., Toyota, T., He, Z.: Fault diagnosis method for machinery in unsteady operating condition by instantaneous power spectrum and genetic programming. Mech. Syst. Signal Process. 1(19), 175–194 (2005). https://doi.org/10.1016/j.ymssp.2003.11.004

    Article  Google Scholar 

  14. Brie, D.: Modelling of the spalled rolling element bearing vibration signal: an overview and some new results. Mech. Syst. Signal Process. 3(14), 353–369 (2000). https://doi.org/10.1006/mssp.1999.1237

    Article  Google Scholar 

  15. McCormick, A.C., Nandi, A.K.: Cyclostationarity in rotating machine vibrations. Mech. Syst. Signal Process. 2(12), 225–242 (1998). https://doi.org/10.1006/mssp.1997.0148

    Article  Google Scholar 

  16. Williams Jr., J.H., DeLonga, D.M., Lee, S.S.: Correlations of acoustic emission with fracture mechanics parameters in structural bridge steels during fatigue. Mat. Eval. 40(10), 1184–1189 (1982)

    Google Scholar 

  17. Krishnakumari, A., Elayaperumal, A., Saravanan, M., Arvindan, C.: Fault diagnostics of spur gear using decision tree and fuzzy classifier. Int. J. Adv. Manuf. Technol. 9–12(89), 3487–3494 (2017). https://doi.org/10.1007/s00170-016-9307-8

    Article  Google Scholar 

  18. Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of object state. In: CEUR Workshop Proceedings, vol. 2353, pp. 810–821 (2019) (Online). http://ceur-ws.org/Vol-2353/paper64.pdf

  19. Domanski, P.D.: Statistical measures. In: Control Performance Assessment: Theoretical Analyses and Industrial Practice. Studies in Systems, Decision and Control, vol. 245, pp. 53–74 (2020). https://doi.org/10.1007/978-3-030-23593-2_4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii P. Babak .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M. (2020). Principles of Construction of Systems for Diagnosing the Energy Equipment. In: Diagnostic Systems For Energy Equipments. Studies in Systems, Decision and Control, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-030-44443-3_1

Download citation

Publish with us

Policies and ethics