Skip to main content

Signaling Pathways Involved in Kidney and Urinary Tract Physiology and Pathology

  • Chapter
  • First Online:
  • 593 Accesses

Abstract

The kidneys are responsible for maintaining homeostasis, keeping the internal milieu in conditions that sustain life. A number of signaling pathways are implicated in all these feedback loops of regulation, and their disruption or overactivation might contribute to several diseases culminating in kidney failure and may, also, lead to kidney cancer. Because specific signaling cascades are also activated in the various histological subtypes of renal cell carcinoma, type-specific tailoring of targeted therapies is desirable. The urinary tract functions as a conduit that drives urine produced in the kidneys as a means of detoxification, for storage in the bladder and finally excretion by the urethra. This micturition cycle is highly coordinated, with prominent influence from the nervous system and related signaling pathways. Changes in these receptors and mediators disrupt the cycle and produce lower urinary tract symptoms which aggravate patients’ quality of life. Also, the urothelium covering the upper and lower urinary tract is not the same, hence signaling mechanisms involved in bladder and upper tract urothelial carcinoma are necessarily different. In this chapter we present and discuss some of the most relevant signaling cascades involved in kidney and urinary tract physiology and pathology, including non-neoplastic diseases and cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

α-AR:

Alpha adrenoceptor

AC:

Adenylyl cyclase

Ach:

Acetylcholine

ADPKD:

Autosomal dominant polycystic kidney disease

AKT/PKB:

Protein kinase B

ANP:

Atrial natriuretic peptide

APC:

Adenomatosis polyposis colon

AR:

Androgen receptor

ATP:

Adenosine triphosphate

β-AR:

Beta-adrenoceptors

b-FGF:

Basic fibroblast growth factor

BlCa:

Bladder cancer

BPH:

Benign prostatic hyperplasia

BUC:

Bladder urothelial carcinoma

CAIX:

Carbonic anhydrase IX

cAMP:

Cyclic adenosine monophosphate

ccRCC:

Clear cell renal cell carcinoma

CDH1:

E-cadherin

CDKN2A:

Cyclin-dependent kinase inhibitor 2A

cGMP:

Cyclic guanosine monophosphate

chRCC:

Chromophobe renal cell carcinoma

CK1:

Casein kinase 1

CKD:

Chronic kidney disease

COX:

Cyclooxygenase

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

DAG:

Diacylglycerol

DHT:

5α-dihydrotestosterone

DKD:

Diabetic kidney disease

EGF:

Endothelial growth factor

EGFR:

Endothelial growth factor receptor

EMT:

Epithelial-to-mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

ER:

Estrogen-receptor

ET:

Endothelin

FGF:

Fibroblast growth factor

FGFR3:

Fibroblast growth factor receptor 3

FH:

Fumarate hydratase

FLCN:

Folliculin

FSP1:

Fibroblast-specific protein 1

Fzd:

Frizzled proteins

GLUT1:

Glucose transporter 1

GSK3β:

Glycogen synthase kinase 3β

HAT:

Histone acetyltransferase

HB-EGF:

Heparin-binding EGF-like growth factor

HGF:

Hepatocyte growth factor

Hh:

Hedgehog

HIF:

Hypoxia inducible factors

IGF-I:

Insulin-like growth factor I

IL:

Interleukin

IL-6R:

Interleukin-6 receptor

IP3:

Inositol triphosphate

KCa:

Kidney cancer

LUTS:

Lower urinary tract symptoms

MAPK:

Mitogen activated protein kinase

MET:

Mesenchymal-epithelial transition

MIBC:

Muscle-invasive bladder cancer

MMR:

Mismatch repair

MMP:

Matrix metalloproteinase

MSI:

Microsatellite instability

mTOR:

Mammalian target of rapamycin

mTORC:

Mammalian target of rapamycin complex

MUC1:

Mucin 1

nAChRs:

Nicotinic-type cholinergic receptors

NMIBC:

Non muscle-invasive bladder cancer

NO:

Nitric oxide

PAI-1:

Plasminogen activator inhibitor-1

PDE:

Phosphodiesterase

PDGF:

Platelet derived growth factor

PD-L1:

Programmed death ligand 1

PIP3:

Phosphatidylinositol-3,4,5-triphosphate

PI3K:

Phosphoinositide 3-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PKD:

Polycystic kidney disease

PKG:

Protein kinase G

PLC:

Phospholipase C

PPARγ:

Peroxisome proliferator-activated receptor-gamma

pRCC:

Papillary renal cell carcinoma

PTH:

Parathyroid hormone

RCC:

Renal cell carcinoma

ROS:

Reactive oxygen species

SDH:

Succinate dehydrogenase

SIRT:

Sirtuin

STAG2:

Stromal antigen 2

STAT3:

Signal transducer and activator of transcription 3

TAK1:

TGF-β-activated kinase 1

TERT:

Telomerase reverse transcriptase

TGF-β1:

Transforming growth factor beta 1

TRP:

Transmembrane receptor potential

TRPV1:

Transient receptor potential cation channel subfamily V member 1

TSC:

Tuberous sclerosis complex

UTUC:

Upper tract urothelial carcinoma

VEGF:

Vascular endothelial growth factor

VHL:

Von Hippel Lindau

VIP:

Vasoactive intestinal peptide

WHO:

World Health Organization

WIF1:

Wnt inhibitory factor 1

YAP:

Yes-associated protein

References

  1. Robson L (2014) The kidney—an organ of critical importance in physiology. J Physiol 592(18):3953–3954. https://doi.org/10.1113/jphysiol.2014.279216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakai T (2017) Recent topics in kidney research: morphology and molecular cell biology. Anat Sci Int 92(2):159–160. https://doi.org/10.1007/s12565-017-0392-z

    Article  PubMed  Google Scholar 

  3. Hoenig MP, Zeidel ML (2014) Homeostasis, the milieu interieur, and the wisdom of the nephron. Clin J Am Soc Nephrol 9(7):1272–1281. https://doi.org/10.2215/CJN.08860813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ivy JR, Bailey MA (2014) Pressure natriuresis and the renal control of arterial blood pressure. J Physiol 592(18):3955–3967. https://doi.org/10.1113/jphysiol.2014.271676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lullo LD, Reeves PB, Bellasi A, Ronco C (2019) Cardiorenal syndrome in acute kidney injury. Semin Nephrol 39(1):31–40. https://doi.org/10.1016/j.semnephrol.2018.10.003

    Article  PubMed  Google Scholar 

  6. Kinne-Saffran E, Kinne RK (1994) Jacob Henle: the kidney and beyond. Am J Nephrol 14(4–6):355–360. https://doi.org/10.1159/000168747

    Article  CAS  PubMed  Google Scholar 

  7. Lederer E (2014) Regulation of serum phosphate. J Physiol 592(18):3985–3995. https://doi.org/10.1113/jphysiol.2014.273979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5(Suppl 1):S23–S30. https://doi.org/10.2215/CJN.05910809

    Article  CAS  PubMed  Google Scholar 

  9. Denic A, Glassock RJ, Rule AD (2016) Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis 23(1):19–28. https://doi.org/10.1053/j.ackd.2015.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barak H, Surendran K, Boyle SC (2012) The role of Notch signaling in kidney development and disease. Adv Exp Med Biol 727:99–113. https://doi.org/10.1007/978-1-4614-0899-4_8

    Article  CAS  PubMed  Google Scholar 

  11. Wong JS, Meliambro K, Ray J, Campbell KN (2016) Hippo signaling in the kidney: the good and the bad. Am J Physiol Renal Physiol 311(2):F241–F248. https://doi.org/10.1152/ajprenal.00500.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krause M, Rak-Raszewska A, Pietila I, Quaggin SE, Vainio S (2015) Signaling during kidney development. Cells 4(2):112–132. https://doi.org/10.3390/cells4020112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xiao Q, Rongfei W, Lingqiang Z, Fuchu H (2015) The roles of signaling pathways in regulating kidney development. Yi Chuan 37(1):1–7. https://doi.org/10.16288/j.yczz.2015.01.001

    Article  CAS  Google Scholar 

  14. Djudjaj S, Boor P (2018) Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med. https://doi.org/10.1016/j.mam.2018.06.002

    Article  PubMed  Google Scholar 

  15. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 117(3):524–529. https://doi.org/10.1172/JCI31487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342(18):1350–1358. https://doi.org/10.1056/NEJM200005043421807

    Article  CAS  PubMed  Google Scholar 

  17. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 1782(4):197–228. https://doi.org/10.1016/j.bbadis.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  18. Lan A, Du J (2015) Potential role of Akt signaling in chronic kidney disease. Nephrol Dial Transplant 30(3):385–394. https://doi.org/10.1093/ndt/gfu196

    Article  CAS  PubMed  Google Scholar 

  19. Choi ME, Ding Y, Kim SI (2012) TGF-beta signaling via TAK1 pathway: role in kidney fibrosis. Semin Nephrol 32(3):244–252. https://doi.org/10.1016/j.semnephrol.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K (2011) Transcriptome analysis of human diabetic kidney disease. Diabetes 60(9):2354–2369. https://doi.org/10.2337/db10-1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edeling M, Ragi G, Huang S, Pavenstadt H, Susztak K (2016) Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol 12(7):426–439. https://doi.org/10.1038/nrneph.2016.54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou D, Tan RJ, Liu Y (2016) Sonic hedgehog signaling in kidney fibrosis: a master communicator. Sci China Life Sci 59(9):920–929. https://doi.org/10.1007/s11427-016-0020-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan RJ, Zhou D, Zhou L, Liu Y (2011) Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl 4(1):84–90. https://doi.org/10.1038/kisup.2014.16

    Article  CAS  Google Scholar 

  24. Su H, Lei CT, Zhang C (2017) Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol 8:405. https://doi.org/10.3389/fimmu.2017.00405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chuang PY, He JC (2010) JAK/STAT signaling in renal diseases. Kidney Int 78(3):231–234. https://doi.org/10.1038/ki.2010.158

    Article  CAS  PubMed  Google Scholar 

  26. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14. https://doi.org/10.1016/j.diabres.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  27. Fu J, Lee K, Chuang PY, Liu Z, He JC (2015) Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol 308(4):F287–F297. https://doi.org/10.1152/ajprenal.00533.2014

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki H, Frank GD, Utsunomiya H, Higuchi S, Eguchi S (2006) Current understanding of the mechanism and role of ROS in angiotensin II signal transduction. Curr Pharm Biotechnol 7(2):81–86

    Article  CAS  PubMed  Google Scholar 

  29. Higuchi S, Ohtsu H, Suzuki H, Shirai H, Frank GD, Eguchi S (2007) Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 112(8):417–428. https://doi.org/10.1042/CS20060342

    Article  CAS  PubMed  Google Scholar 

  30. Rukavina Mikusic NL, Kravetz MC, Kouyoumdzian NM, Della Penna SL, Roson MI, Fernandez BE, Choi MR (2014) Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. J Signal Transduct 2014:731350. https://doi.org/10.1155/2014/731350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mao Z, Chong J, Ong AC (2016) Autosomal dominant polycystic kidney disease: recent advances in clinical management. F1000Res 5:2029. https://doi.org/10.12688/f1000research.9045.1

  32. Malekshahabi T, Khoshdel Rad N, Serra AL, Moghadasali R (2019) Autosomal dominant polycystic kidney disease: disrupted pathways and potential therapeutic interventions. J Cell Physiol. https://doi.org/10.1002/jcp.28094

    Article  PubMed  Google Scholar 

  33. Wallace DP (2011) Cyclic AMP-mediated cyst expansion. Biochim Biophys Acta 1812(10):1291–1300. https://doi.org/10.1016/j.bbadis.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  34. Yamaguchi T, Wallace DP, Magenheimer BS, Hempson SJ, Grantham JJ, Calvet JP (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem 279(39):40419–40430. https://doi.org/10.1074/jbc.M405079200

    Article  CAS  PubMed  Google Scholar 

  35. Zhao H, Ma SX, Shang YQ, Zhang HQ, Su W (2019) microRNAs in chronic kidney disease. Clin Chim Acta. https://doi.org/10.1016/j.cca.2019.01.008

    Article  PubMed  Google Scholar 

  36. Brigant B, Metzinger-Le Meuth V, Massy ZA, McKay N, Liabeuf S, Pelletier M, Sallee M, M’Baya-Moutoula E, Paul P, Drueke TB, Burtey S, Metzinger L (2017) Serum microRNAs are altered in various stages of chronic kidney disease: a preliminary study. Clin Kidney J 10(4):578. https://doi.org/10.1093/ckj/sfx068

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lorenzen JM, Haller H, Thum T (2011) MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol 7(5):286–294. https://doi.org/10.1038/nrneph.2011.26

    Article  CAS  PubMed  Google Scholar 

  38. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2018) Global cancer observatory: cancer tomorrow. Accessed 3 Dec 2018

    Google Scholar 

  39. Gandaglia G, Ravi P, Abdollah F, Abd-El-Barr AE, Becker A, Popa I, Briganti A, Karakiewicz PI, Trinh QD, Jewett MA, Sun M (2014) Contemporary incidence and mortality rates of kidney cancer in the United States. Can Urol Assoc J 8(7–8):247–252. https://doi.org/10.5489/cuaj.1760

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM (2016) The 2016 WHO classification of tumours of the urinary system and male genital organs—Part A: renal, penile, and testicular tumours. Eur Urol 70(1):93–105. https://doi.org/10.1016/j.eururo.2016.02.029

    Article  PubMed  Google Scholar 

  41. Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, Bowlby R, Gibb EA, Akbani R, Beroukhim R, Bottaro DP, Choueiri TK, Gibbs RA, Godwin AK, Haake S, Hakimi AA, Henske EP, Hsieh JJ, Ho TH, Kanchi RS, Krishnan B, Kwiatkowski DJ, Lui W, Merino MJ, Mills GB, Myers J, Nickerson ML, Reuter VE, Schmidt LS, Shelley CS, Shen H, Shuch B, Signoretti S, Srinivasan R, Tamboli P, Thomas G, Vincent BG, Vocke CD, Wheeler DA, Yang L, Kim WY, Robertson AG, Cancer Genome Atlas Research N, Spellman PT, Rathmell WK, Linehan WM (2018) The cancer genome atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep 23(12):3698. https://doi.org/10.1016/j.celrep.2018.06.032

    Article  CAS  Google Scholar 

  42. Banumathy G, Cairns P (2010) Signaling pathways in renal cell carcinoma. Cancer Biol Ther 10(7):658–664. https://doi.org/10.4161/cbt.10.7.13247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su D, Singer EA, Srinivasan R (2015) Molecular pathways in renal cell carcinoma: recent advances in genetics and molecular biology. Curr Opin Oncol 27(3):217–223. https://doi.org/10.1097/CCO.0000000000000186

    Article  CAS  PubMed  Google Scholar 

  44. Brugarolas J (2007) Renal-cell carcinoma–molecular pathways and therapies. N Engl J Med 356(2):185–187. https://doi.org/10.1056/NEJMe068263

    Article  CAS  PubMed  Google Scholar 

  45. Kim WY, Kaelin WG Jr (2006) Molecular pathways in renal cell carcinoma–rationale for targeted treatment. Semin Oncol 33(5):588–595. https://doi.org/10.1053/j.seminoncol.2006.06.001

    Article  CAS  PubMed  Google Scholar 

  46. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239. https://doi.org/10.1007/s10555-007-9055-1

    Article  CAS  PubMed  Google Scholar 

  47. Pantuck AJ, Zeng G, Belldegrun AS, Figlin RA (2003) Pathobiology, prognosis, and targeted therapy for renal cell carcinoma: exploiting the hypoxia-induced pathway. Clin Cancer Res 9(13):4641–4652

    CAS  PubMed  Google Scholar 

  48. Clifford SC, Walsh S, Hewson K, Green EK, Brinke A, Green PM, Gianelli F, Eng C, Maher ER (1999) Genomic organization and chromosomal localization of the human CUL2 gene and the role of von Hippel-Lindau tumor suppressor-binding protein (CUL2 and VBP1) mutation and loss in renal-cell carcinoma development. Genes Chromosomes Cancer 26(1):20–28

    Article  CAS  PubMed  Google Scholar 

  49. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29(5):625–634. https://doi.org/10.1038/onc.2009.441

    Article  CAS  PubMed  Google Scholar 

  50. Stillebroer AB, Mulders PF, Boerman OC, Oyen WJ, Oosterwijk E (2010) Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur Urol 58(1):75–83. https://doi.org/10.1016/j.eururo.2010.03.015

    Article  CAS  PubMed  Google Scholar 

  51. McCormick RI, Blick C, Ragoussis J, Schoedel J, Mole DR, Young AC, Selby PJ, Banks RE, Harris AL (2013) miR-210 is a target of hypoxia-inducible factors 1 and 2 in renal cancer, regulates ISCU and correlates with good prognosis. Br J Cancer 108(5):1133–1142. https://doi.org/10.1038/bjc.2013.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. https://doi.org/10.1038/nrc1187

    Article  CAS  PubMed  Google Scholar 

  53. Chappell JC, Payne LB, Rathmell WK (2019) Hypoxia, angiogenesis, and metabolism in the hereditary kidney cancers. J Clin Invest. https://doi.org/10.1172/JCI120855

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aldo P, Elisabetta C (2018) Role of HIF-1 in cancer progression: novel insights. Curr Mol Med, A review. https://doi.org/10.2174/1566524018666181109121849

    Book  Google Scholar 

  55. Schodel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR (2016) Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur Urol 69(4):646–657. https://doi.org/10.1016/j.eururo.2015.08.007

    Article  CAS  PubMed  Google Scholar 

  56. Lin F, Zhang PL, Yang XJ, Prichard JW, Lun M, Brown RE (2006) Morphoproteomic and molecular concomitants of an overexpressed and activated mTOR pathway in renal cell carcinomas. Ann Clin Lab Sci 36(3):283–293

    CAS  PubMed  Google Scholar 

  57. Linehan WM, Srinivasan R, Schmidt LS (2010) The genetic basis of kidney cancer: a metabolic disease. Nat Rev Urol 7(5):277–285. https://doi.org/10.1038/nrurol.2010.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945. https://doi.org/10.1101/gad.1212704

    Article  CAS  PubMed  Google Scholar 

  59. Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, Esposito D, Gillette WK, Hopkins RF 3rd, Hartley JL, Furihata M, Oishi S, Zhen W, Burke TR Jr, Linehan WM, Schmidt LS, Zbar B (2006) Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA 103(42):15552–15557. https://doi.org/10.1073/pnas.0603781103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pires-Luis A, Montezuma D, Vieira J, Ramalho-Carvalho J, Santos C, Teixeira M, Jeronimo C, Henrique R (2018) Hybrid oncocytic/chromophobe renal cell tumor: an integrated genetic and epigenetic characterization of a case. Exp Mol Pathol 105(3):352–356. https://doi.org/10.1016/j.yexmp.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  61. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473. https://doi.org/10.1038/onc.2016.304

    Article  CAS  PubMed  Google Scholar 

  62. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5(12):997–1014. https://doi.org/10.1038/nrd2154

    Article  CAS  PubMed  Google Scholar 

  63. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968. https://doi.org/10.1016/j.cell.2006.06.055

    Article  CAS  PubMed  Google Scholar 

  64. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127(3):469–480. https://doi.org/10.1016/j.cell.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  65. Sansom OJ, Griffiths DF, Reed KR, Winton DJ, Clarke AR (2005) Apc deficiency predisposes to renal carcinoma in the mouse. Oncogene 24(55):8205–8210. https://doi.org/10.1038/sj.onc.1208956

    Article  CAS  PubMed  Google Scholar 

  66. Battagli C, Uzzo RG, Dulaimi E, Ibanez de Caceres I, Krassenstein R, Al-Saleem T, Greenberg RE, Cairns P (2003) Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res 63(24):8695–8699

    CAS  PubMed  Google Scholar 

  67. Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI, Bharti A, Seldin DC, Lecker SH, Dominguez I, Cohen HT (2008) Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol 10(10):1208–1216. https://doi.org/10.1038/ncb1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peruzzi B, Athauda G, Bottaro DP (2006) The von Hippel-Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 103(39):14531–14536. https://doi.org/10.1073/pnas.0606850103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawakami K, Hirata H, Yamamura S, Kikuno N, Saini S, Majid S, Tanaka Y, Kawamoto K, Enokida H, Nakagawa M, Dahiya R (2009) Functional significance of Wnt inhibitory factor-1 gene in kidney cancer. Cancer Res 69(22):8603–8610. https://doi.org/10.1158/0008-5472.CAN-09-2534

    Article  CAS  PubMed  Google Scholar 

  70. Tovar EA, Graveel CR (2017) MET in human cancer: germline and somatic mutations. Ann Transl Med 5(10):205. https://doi.org/10.21037/atm.2017.03.64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xiang C, Chen J, Fu P (2017) HGF/Met signaling in cancer invasion: the impact on cytoskeleton remodeling. Cancers (Basel) 9(5). https://doi.org/10.3390/cancers9050044

  72. Monga SP, Mars WM, Pediaditakis P, Bell A, Mule K, Bowen WC, Wang X, Zarnegar R, Michalopoulos GK (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 62(7):2064–2071

    CAS  PubMed  Google Scholar 

  73. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC, Wu KJ (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305. https://doi.org/10.1038/ncb1691

    Article  CAS  PubMed  Google Scholar 

  74. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC, Hunt T, Mitchell M, Olpin S, Moat SJ, Hargreaves IP, Heales SJ, Chung YL, Griffiths JR, Dalgleish A, McGrath JA, Gleeson MJ, Hodgson SV, Poulsom R, Rustin P, Tomlinson IP (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14(15):2231–2239. https://doi.org/10.1093/hmg/ddi227

    Article  CAS  PubMed  Google Scholar 

  75. Sudarshan S, Sourbier C, Kong HS, Block K, Valera Romero VA, Yang Y, Galindo C, Mollapour M, Scroggins B, Goode N, Lee MJ, Gourlay CW, Trepel J, Linehan WM, Neckers L (2009) Fumarate hydratase deficiency in renal cancer induces glycolytic addiction and hypoxia-inducible transcription factor 1alpha stabilization by glucose-dependent generation of reactive oxygen species. Mol Cell Biol 29(15):4080–4090. https://doi.org/10.1128/MCB.00483-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miranda-Goncalves V, Lameirinhas A, Henrique R, Jeronimo C (2018) Metabolism and epigenetic interplay in cancer: regulation and putative therapeutic targets. Front Genet 9:427. https://doi.org/10.3389/fgene.2018.00427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. https://doi.org/10.1038/ncb1722

    Article  CAS  PubMed  Google Scholar 

  78. Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907. https://doi.org/10.1101/gad.1640608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ferreira MJ, Pires-Luis AS, Vieira-Coimbra M, Costa-Pinheiro P, Antunes L, Dias PC, Lobo F, Oliveira J, Goncalves CS, Costa BM, Henrique R, Jeronimo C (2017) SETDB2 and RIOX2 are differentially expressed among renal cell tumor subtypes, associating with prognosis and metastization. Epigenetics 12(12):1057–1064. https://doi.org/10.1080/15592294.2017.1385685

    Article  PubMed  Google Scholar 

  80. Pires-Luis AS, Costa-Pinheiro P, Ferreira MJ, Antunes L, Lobo F, Oliveira J, Henrique R, Jeronimo C (2017) Identification of clear cell renal cell carcinoma and oncocytoma using a three-gene promoter methylation panel. J Transl Med 15(1):149. https://doi.org/10.1186/s12967-017-1248-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pires-Luis AS, Vieira-Coimbra M, Ferreira MJ, Ramalho-Carvalho J, Costa-Pinheiro P, Antunes L, Dias PC, Lobo F, Oliveira J, Graca I, Henrique R, Jeronimo C (2016) Prognostic significance of MST1R dysregulation in renal cell tumors. Am J Cancer Res 6(8):1799–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pires-Luis AS, Vieira-Coimbra M, Vieira FQ, Costa-Pinheiro P, Silva-Santos R, Dias PC, Antunes L, Lobo F, Oliveira J, Goncalves CS, Costa BM, Henrique R, Jeronimo C (2015) Expression of histone methyltransferases as novel biomarkers for renal cell tumor diagnosis and prognostication. Epigenetics 10(11):1033–1043. https://doi.org/10.1080/15592294.2015.1103578

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lobo J, Barros-Silva D, Henrique R, Jeronimo C (2018) The emerging role of epitranscriptomics in cancer: focus on urological tumors. Genes (Basel) 9(11). https://doi.org/10.3390/genes9110552

  84. Elbadawi A (1996) Functional anatomy of the organs of micturition. Urol Clin North Am 23(2):177–210

    Article  CAS  PubMed  Google Scholar 

  85. Hickling DR, Sun TT, Wu XR (2015) Anatomy and physiology of the urinary tract: relation to host defense and microbial infection. Microbiol Spectr 3(4). https://doi.org/10.1128/microbiolspec.uti-0016-2012

  86. Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU, Beachy PA (2011) Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472(7341):110–114. https://doi.org/10.1038/nature09851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Varley CL, Stahlschmidt J, Smith B, Stower M, Southgate J (2004) Activation of peroxisome proliferator-activated receptor-gamma reverses squamous metaplasia and induces transitional differentiation in normal human urothelial cells. Am J Pathol 164(5):1789–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. O’Grady F, Cattell WR (1966) Kinetics of urinary tract infection. II. The bladder. Br J Urol 38(2):156–162

    Article  PubMed  Google Scholar 

  89. O’Grady F, Cattell WR (1966) Kinetics of urinary tract infection. I. Upper urinary tract. Br J Urol 38(2):149–155

    Google Scholar 

  90. Hu CC, Liang FX, Zhou G, Tu L, Tang CH, Zhou J, Kreibich G, Sun TT (2005) Assembly of urothelial plaques: tetraspanin function in membrane protein trafficking. Mol Biol Cell 16(9):3937–3950. https://doi.org/10.1091/mbc.e05-02-0136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khandelwal P, Abraham SN, Apodaca G (2009) Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 297(6):F1477–F1501. https://doi.org/10.1152/ajprenal.00327.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liang FX, Bosland MC, Huang H, Romih R, Baptiste S, Deng FM, Wu XR, Shapiro E, Sun TT (2005) Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. J Cell Biol 171(5):835–844. https://doi.org/10.1083/jcb.200505035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cuckow PM, Nyirady P, Winyard PJ (2001) Normal and abnormal development of the urogenital tract. Prenat Diagn 21(11):908–916

    Article  CAS  PubMed  Google Scholar 

  94. Riedel I, Liang FX, Deng FM, Tu L, Kreibich G, Wu XR, Sun TT, Hergt M, Moll R (2005) Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder? Eur J Cell Biol 84(2–3):393–405. https://doi.org/10.1016/j.ejcb.2004.12.011

  95. Catto JW, Azzouzi AR, Amira N, Rehman I, Feeley KM, Cross SS, Fromont G, Sibony M, Hamdy FC, Cussenot O, Meuth M (2003) Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene 22(54):8699–8706. https://doi.org/10.1038/sj.onc.1206964

    Article  CAS  PubMed  Google Scholar 

  96. Catto JW, Azzouzi AR, Rehman I, Feeley KM, Cross SS, Amira N, Fromont G, Sibony M, Cussenot O, Meuth M, Hamdy FC (2005) Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J Clin Oncol 23(13):2903–2910. https://doi.org/10.1200/JCO.2005.03.163

    Article  CAS  PubMed  Google Scholar 

  97. Margulis V, Shariat SF, Matin SF, Kamat AM, Zigeuner R, Kikuchi E, Lotan Y, Weizer A, Raman JD, Wood CG, Upper Tract Urothelial Carcinoma Collaboration, The Upper Tract Urothelial Carcinoma Collaboration (2009) Outcomes of radical nephroureterectomy: a series from the Upper Tract Urothelial Carcinoma Collaboration. Cancer 115(6):1224–1233. https://doi.org/10.1002/cncr.24135

  98. Green DA, Rink M, Xylinas E, Matin SF, Stenzl A, Roupret M, Karakiewicz PI, Scherr DS, Shariat SF (2013) Urothelial carcinoma of the bladder and the upper tract: disparate twins. J Urol 189(4):1214–1221. https://doi.org/10.1016/j.juro.2012.05.079

    Article  PubMed  Google Scholar 

  99. Birder L, Andersson KE (2013) Urothelial signaling. Physiol Rev 93(2):653–680. https://doi.org/10.1152/physrev.00030.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leow JJ, Chong KT, Chang SL, Bellmunt J (2016) Upper tract urothelial carcinoma: a different disease entity in terms of management. ESMO Open 1(6):e000126. https://doi.org/10.1136/esmoopen-2016-000126

    Article  PubMed  Google Scholar 

  101. Birder LA (2010) Urothelial signaling. Auton Neurosci 153(1–2):33–40. https://doi.org/10.1016/j.autneu.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  102. Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84(3):935–986. https://doi.org/10.1152/physrev.00038.2003

    Article  CAS  PubMed  Google Scholar 

  103. Drake MJ (2007) The integrative physiology of the bladder. Ann R Coll Surg Engl 89(6):580–585. https://doi.org/10.1308/003588407X205585

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lang RJ, Hashitani H, Tonta MA, Bourke JL, Parkington HC, Suzuki H (2010) Spontaneous electrical and Ca2+ signals in the mouse renal pelvis that drive pyeloureteric peristalsis. Clin Exp Pharmacol Physiol 37(4):509–515. https://doi.org/10.1111/j.1440-1681.2009.05226.x

    Article  CAS  PubMed  Google Scholar 

  105. Park JM, Bloom DA, McGuire EJ (1997) The guarding reflex revisited. Br J Urol 80(6):940–945

    Article  CAS  PubMed  Google Scholar 

  106. Andersson KE, Wein AJ (2004) Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 56(4):581–631. https://doi.org/10.1124/pr.56.4.4

    Article  CAS  PubMed  Google Scholar 

  107. Fowler CJ, Griffiths D, de Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9(6):453–466. https://doi.org/10.1038/nrn2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Griffiths D (2015) Neural control of micturition in humans: a working model. Nat Rev Urol 12(12):695–705. https://doi.org/10.1038/nrurol.2015.266

    Article  CAS  PubMed  Google Scholar 

  109. Creed KE, Ishikawa S, Ito Y (1983) Electrical and mechanical activity recorded from rabbit urinary bladder in response to nerve stimulation. J Physiol 338:149–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sigala S, Mirabella G, Peroni A, Pezzotti G, Simeone C, Spano P, Cunico SC (2002) Differential gene expression of cholinergic muscarinic receptor subtypes in male and female normal human urinary bladder. Urology 60(4):719–725

    Article  PubMed  Google Scholar 

  111. Caulfield MP, Birdsall NJ (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50(2):279–290

    Google Scholar 

  112. Chess-Williams R (2002) Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autacoid Pharmacol 22(3):133–145

    Article  CAS  PubMed  Google Scholar 

  113. Hashitani H, Bramich NJ, Hirst GD (2000) Mechanisms of excitatory neuromuscular transmission in the guinea-pig urinary bladder. J Physiol 524(Pt 2):565–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. An JY, Yun HS, Lee YP, Yang SJ, Shim JO, Jeong JH, Shin CY, Kim JH, Kim DS, Sohn UD (2002) The intracellular pathway of the acetylcholine-induced contraction in cat detrusor muscle cells. Br J Pharmacol 137(7):1001–1010. https://doi.org/10.1038/sj.bjp.0704954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wibberley A, Chen Z, Hu E, Hieble JP, Westfall TD (2003) Expression and functional role of Rho-kinase in rat urinary bladder smooth muscle. Br J Pharmacol 138(5):757–766. https://doi.org/10.1038/sj.bjp.0705109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Giglio D, Delbro DS, Tobin G (2001) On the functional role of muscarinic M2 receptors in cholinergic and purinergic responses in the rat urinary bladder. Eur J Pharmacol 428(3):357–364

    Article  CAS  PubMed  Google Scholar 

  117. Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM (1997) Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol 120(8):1409–1418. https://doi.org/10.1038/sj.bjp.0701048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Matsui M, Griffin MT, Shehnaz D, Taketo MM, Ehlert FJ (2003) Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M2 receptor knockout mice. J Pharmacol Exp Ther 305(1):106–113. https://doi.org/10.1124/jpet.102.044701

    Article  CAS  PubMed  Google Scholar 

  119. Nakamura T, Kimura J, Yamaguchi O (2002) Muscarinic M2 receptors inhibit Ca2+ -activated K+ channels in rat bladder smooth muscle. Int J Urol 9(12):689–696

    Article  CAS  PubMed  Google Scholar 

  120. Beckel JM, Birder LA (2012) Differential expression and function of nicotinic acetylcholine receptors in the urinary bladder epithelium of the rat. J Physiol 590(6):1465–1480. https://doi.org/10.1113/jphysiol.2011.226860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gosling JA, Dixon JS, Jen PY (1999) The distribution of noradrenergic nerves in the human lower urinary tract. A review. Eur Urol 36(Suppl 1):23–30. https://doi.org/10.1159/000052314

    Article  PubMed  Google Scholar 

  122. Rohner TJ, Hannigan JD, Sanford EJ (1978) Altered in vitro adrenergic responses of dog detrusor msucle after chronic bladder outlet obstruction. Urology 11(4):357–361

    Article  CAS  PubMed  Google Scholar 

  123. Tsujii T, Azuma H, Yamaguchi T, Oshima H (1992) A possible role of decreased relaxation mediated by beta-adrenoceptors in bladder outlet obstruction by benign prostatic hyperplasia. Br J Pharmacol 107(3):803–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Igawa Y, Yamazaki Y, Takeda H, Hayakawa K, Akahane M, Ajisawa Y, Yoneyama T, Nishizawa O, Andersson KE (1999) Functional and molecular biological evidence for a possible β3-adrenoceptor in the human detrusor muscle. Br J Pharmacol 126(3):819–825. https://doi.org/10.1038/sj.bjp.0702358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Igawa Y, Yamazaki Y, Takeda H, Kaidoh K, Akahane M, Ajisawa Y, Yoneyama T, Nishizawa O, Andersson KE (2001) Relaxant effects of isoproterenol and selective β3-adrenoceptor agonists on normal, low compliant and hyperreflexic human bladders. J Urol 165(1):240–244. https://doi.org/10.1097/00005392-200101000-00071

    Article  CAS  PubMed  Google Scholar 

  126. Perlberg S, Caine M (1982) Adrenergic response of bladder muscle in prostatic obstruction: its relation to detrusor instability. Urology 20(5):524–527

    Article  CAS  PubMed  Google Scholar 

  127. Nakahira Y, Hashitani H, Fukuta H, Sasaki S, Kohri K, Suzuki H (2001) Effects of isoproterenol on spontaneous excitations in detrusor smooth muscle cells of the guinea pig. J Urol 166(1):335–340

    Article  CAS  PubMed  Google Scholar 

  128. O’Reilly BA, Kosaka AH, Chang TK, Ford AP, Popert R, McMahon SB (2001) A quantitative analysis of purinoceptor expression in the bladders of patients with symptomatic outlet obstruction. BJU Int 87(7):617–622

    Article  PubMed  Google Scholar 

  129. Ray FR, Moore KH, Hansen MA, Barden JA (2003) Loss of purinergic P2X receptor innervation in human detrusor and subepithelium from adults with sensory urgency. Cell Tissue Res 314(3):351–359. https://doi.org/10.1007/s00441-003-0788-z

    Article  CAS  PubMed  Google Scholar 

  130. Parsons CL (2007) The role of the urinary epithelium in the pathogenesis of interstitial cystitis/prostatitis/urethritis. Urology 69(4 Suppl):9–16. https://doi.org/10.1016/j.urology.2006.03.084

    Article  PubMed  Google Scholar 

  131. Burnstock G, Williams M (2000) P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther 295(3):862–869

    CAS  PubMed  Google Scholar 

  132. Wang EC, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115(9):2412–2422. https://doi.org/10.1172/JCI24086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Du S, Araki I, Mikami Y, Zakoji H, Beppu M, Yoshiyama M, Takeda M (2007) Amiloride-sensitive ion channels in urinary bladder epithelium involved in mechanosensory transduction by modulating stretch-evoked adenosine triphosphate release. Urology 69(3):590–595. https://doi.org/10.1016/j.urology.2007.01.039

    Article  PubMed  Google Scholar 

  134. Hofmann F, Ammendola A, Schlossmann J (2000) Rising behind NO: cGMP-dependent protein kinases. J Cell Sci 113(Pt 10):1671–1676

    Article  CAS  PubMed  Google Scholar 

  135. Ehren I, Adolfsson J, Wiklund NP (1994) Nitric oxide synthase activity in the human urogenital tract. Urol Res 22(5):287–290

    Article  CAS  PubMed  Google Scholar 

  136. Ehren I, Iversen H, Jansson O, Adolfsson J, Wiklund NP (1994) Localization of nitric oxide synthase activity in the human lower urinary tract and its correlation with neuroeffector responses. Urology 44(5):683–687

    Article  CAS  PubMed  Google Scholar 

  137. Reubi JC (2000) In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues: clinical implications. Ann N Y Acad Sci 921:1–25

    Article  CAS  PubMed  Google Scholar 

  138. Garcia-Pascual A, Persson K, Holmquist F, Andersson KE (1993) Endothelin-1-induced phosphoinositide hydrolysis and contraction in isolated rabbit detrusor and urethral smooth muscle. Gen Pharmacol 24(1):131–138

    Article  CAS  PubMed  Google Scholar 

  139. Lecci A, Maggi CA (2001) Tachykinins as modulators of the micturition reflex in the central and peripheral nervous system. Regul Pept 101(1–3):1–18

    Article  CAS  PubMed  Google Scholar 

  140. Anderson GF, Barraco RA, Normile HJ, Rosen TN (1984) Evidence for angiotensin II receptors in the urinary bladder of the rabbit. Can J Physiol Pharmacol 62(4):390–395

    Article  CAS  PubMed  Google Scholar 

  141. Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5(9):856–860. https://doi.org/10.1038/nn902

    Article  CAS  PubMed  Google Scholar 

  142. Andersson KE, Gratzke C, Hedlund P (2010) The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int 106(8):1114–1127. https://doi.org/10.1111/j.1464-410X.2010.09650.x

    Article  CAS  PubMed  Google Scholar 

  143. Merrill L, Gonzalez EJ, Girard BM, Vizzard MA (2016) Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol 13(4):193–204. https://doi.org/10.1038/nrurol.2016.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tincello DG, Taylor AH, Spurling SM, Bell SC (2009) Receptor isoforms that mediate estrogen and progestagen action in the female lower urinary tract. J Urol 181(3):1474–1482. https://doi.org/10.1016/j.juro.2008.10.104

    Article  CAS  PubMed  Google Scholar 

  145. Jeremy JY, Tsang V, Mikhailidis DP, Rogers H, Morgan RJ, Dandona P (1987) Eicosanoid synthesis by human urinary bladder mucosa: pathological implications. Br J Urol 59(1):36–39

    Article  CAS  PubMed  Google Scholar 

  146. Chen Y, Arner A, Bornfeldt KE, Uvelius B, Arnqvist HJ (1995) Development of smooth muscle hypertrophy is closely associated with increased gene expression of insulin-like growth factor binding protein-2 and -4. Growth Regul 5(1):45–52

    CAS  PubMed  Google Scholar 

  147. Chen Y, Gustafsson B, Arnqvist HJ (1997) IGF-binding protein-2 is induced during development of urinary bladder hypertrophy in the diabetic rat. Am J Physiol 272(2 Pt 1):E297–E303. https://doi.org/10.1152/ajpendo.1997.272.2.E297

    Article  CAS  PubMed  Google Scholar 

  148. Vinte-Jensen L, Uvelius B, Nexo E, Arner A (1996) Contractile and cytoskeletal proteins in urinary bladder smooth muscle from rats treated with epidermal growth factor. Urol Res 24(4):229–234

    Article  CAS  PubMed  Google Scholar 

  149. Park JM, Borer JG, Freeman MR, Peters CA (1998) Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol 275(5 Pt 1):C1247–C1254

    Article  CAS  PubMed  Google Scholar 

  150. Nguyen HT, Adam RM, Bride SH, Park JM, Peters CA, Freeman MR (2000) Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol 279(4):C1155–C1167. https://doi.org/10.1152/ajpcell.2000.279.4.C1155

    Article  CAS  PubMed  Google Scholar 

  151. Chen MW, Levin RM, Buttyan R (1995) Peptide growth factors in normal and hypertrophied bladder. World J Urol 13(6):344–348

    Article  CAS  PubMed  Google Scholar 

  152. Kushida N, Kabuyama Y, Yamaguchi O, Homma Y (2001) Essential role for extracellular Ca(2+) in JNK activation by mechanical stretch in bladder smooth muscle cells. Am J Physiol Cell Physiol 281(4):C1165–C1172. https://doi.org/10.1152/ajpcell.2001.281.4.C1165

    Article  CAS  PubMed  Google Scholar 

  153. Abbosh PH, McConkey DJ, Plimack ER (2015) Targeting signaling transduction pathways in bladder cancer. Curr Oncol Rep 17(12):58. https://doi.org/10.1007/s11912-015-0477-6

    Article  CAS  PubMed  Google Scholar 

  154. Wong MCS, Fung FDH, Leung C, Cheung WWL, Goggins WB, Ng CF (2018) The global epidemiology of bladder cancer: a joinpoint regression analysis of its incidence and mortality trends and projection. Sci Rep 8(1):1129. https://doi.org/10.1038/s41598-018-19199-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Leal J, Luengo-Fernandez R, Sullivan R, Witjes JA (2016) Economic burden of bladder cancer across the European Union. Eur Urol 69(3):438–447. https://doi.org/10.1016/j.eururo.2015.10.024

    Article  PubMed  Google Scholar 

  156. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, Lotan Y (2017) Bladder cancer. Nat Rev Dis Primers 3:17022. https://doi.org/10.1038/nrdp.2017.22

    Article  PubMed  Google Scholar 

  157. Moch H, Ulbright T, Humphrey P, Reuter V (2016) WHO classification of tumours of the urinary system and male genital organs, 4th edn. Lyon, IARC

    Google Scholar 

  158. Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V (2016) Key signaling pathways in the muscle-invasive bladder carcinoma: clinical markers for disease modeling and optimized treatment. Int J Cancer 138(11):2562–2569. https://doi.org/10.1002/ijc.29918

    Article  CAS  PubMed  Google Scholar 

  159. van der Heijden MS, van Rhijn BW (2015) The molecular background of urothelial cancer: ready for action? Eur Urol 67(2):202–203. https://doi.org/10.1016/j.eururo.2014.07.017

  160. Sjodahl G, Eriksson P, Liedberg F, Hoglund M (2017) Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol 242(1):113–125. https://doi.org/10.1002/path.4886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, Roth B, Cheng T, Tran M, Lee IL, Melquist J, Bondaruk J, Majewski T, Zhang S, Pretzsch S, Baggerly K, Siefker-Radtke A, Czerniak B, Dinney CP, McConkey DJ (2014) Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25(2):152–165. https://doi.org/10.1016/j.ccr.2014.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, Castro MAA, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa CB, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, Network TR, Weinstein JN, Kwiatkowski DJ, Lerner SP (2018) Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 174(4):1033. https://doi.org/10.1016/j.cell.2018.07.036

    Article  CAS  PubMed  Google Scholar 

  163. Mellon K, Wright C, Kelly P, Horne CH, Neal DE (1995) Long-term outcome related to epidermal growth factor receptor status in bladder cancer. J Urol 153(3 Pt 2):919–925

    CAS  PubMed  Google Scholar 

  164. Dasgupta S, Menezes ME, Das SK, Emdad L, Janjic A, Bhatia S, Mukhopadhyay ND, Shao C, Sarkar D, Fisher PB (2013) Novel role of MDA-9/syntenin in regulating urothelial cell proliferation by modulating EGFR signaling. Clin Cancer Res 19(17):4621–4633. https://doi.org/10.1158/1078-0432.CCR-13-0585

    Article  CAS  PubMed  Google Scholar 

  165. Majumdar S, Gong EM, Di Vizio D, Dreyfuss J, Degraff DJ, Hager MH, Park PJ, Bellmunt J, Matusik RJ, Rosenberg JE, Adam RM (2013) Loss of Sh3gl2/endophilin A1 is a common event in urothelial carcinoma that promotes malignant behavior. Neoplasia 15(7):749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhao J, Xu W, Zhang Z, Song R, Zeng S, Sun Y, Xu C (2015) Prognostic role of HER2 expression in bladder cancer: a systematic review and meta-analysis. Int Urol Nephrol 47(1):87–94. https://doi.org/10.1007/s11255-014-0866-z

    Article  CAS  PubMed  Google Scholar 

  167. Inoue M, Koga F, Yoshida S, Tamura T, Fujii Y, Ito E, Kihara K (2014) Significance of ERBB2 overexpression in therapeutic resistance and cancer-specific survival in muscle-invasive bladder cancer patients treated with chemoradiation-based selective bladder-sparing approach. Int J Radiat Oncol Biol Phys 90(2):303–311. https://doi.org/10.1016/j.ijrobp.2014.05.043

    Article  CAS  PubMed  Google Scholar 

  168. Liu X, Zhang W, Geng D, He J, Zhao Y, Yu L (2014) Clinical significance of fibroblast growth factor receptor-3 mutations in bladder cancer: a systematic review and meta-analysis. Genet Mol Res 13(1):1109–1120. https://doi.org/10.4238/2014.February.20.12

    Article  CAS  PubMed  Google Scholar 

  169. di Martino E, L’Hote CG, Kennedy W, Tomlinson DC, Knowles MA (2009) Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene 28(48):4306–4316. https://doi.org/10.1038/onc.2009.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Catto JW, Miah S, Owen HC, Bryant H, Myers K, Dudziec E, Larre S, Milo M, Rehman I, Rosario DJ, Di Martino E, Knowles MA, Meuth M, Harris AL, Hamdy FC (2009) Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res 69(21):8472–8481. https://doi.org/10.1158/0008-5472.CAN-09-0744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kluth M, Reynolds K, Rink M, Chun F, Dahlem R, Fisch M, Hoppner W, Wagner W, Doh O, Terracciano L, Simon R, Sauter G, Minner S (2014) Reduced membranous MET expression is linked to bladder cancer progression. Cancer Genet 207(4):147–152. https://doi.org/10.1016/j.cancergen.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  172. Nishikawa M, Miyake H, Behnsawy HM, Fujisawa M (2015) Significance of 4E-binding protein 1 as a therapeutic target for invasive urothelial carcinoma of the bladder. Urol Oncol 33(4):166.e169–166.e115. https://doi.org/10.1016/j.urolonc.2014.12.006

  173. Gupta S, Hau AM, Beach JR, Harwalker J, Mantuano E, Gonias SL, Egelhoff TT, Hansel DE (2013) Mammalian target of rapamycin complex 2 (mTORC2) is a critical determinant of bladder cancer invasion. PLoS One 8(11):e81081. https://doi.org/10.1371/journal.pone.0081081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, Pirun M, Sander C, Socci ND, Ostrovnaya I, Viale A, Heguy A, Peng L, Chan TA, Bochner B, Bajorin DF, Berger MF, Taylor BS, Solit DB (2012) Genome sequencing identifies a basis for everolimus sensitivity. Science 338(6104):221. https://doi.org/10.1126/science.1226344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Naito S, Bilim V, Yuuki K, Ugolkov A, Motoyama T, Nagaoka A, Kato T, Tomita Y (2010) Glycogen synthase kinase-3beta: a prognostic marker and a potential therapeutic target in human bladder cancer. Clin Cancer Res 16(21):5124–5132. https://doi.org/10.1158/1078-0432.CCR-10-0275

    Article  CAS  PubMed  Google Scholar 

  176. Kopparapu PK, Boorjian SA, Robinson BD, Downes M, Gudas LJ, Mongan NP, Persson JL (2013) Expression of VEGF and its receptors VEGFR1/VEGFR2 is associated with invasiveness of bladder cancer. Anticancer Res 33(6):2381–2390

    CAS  PubMed  Google Scholar 

  177. Piaton E, Carre C, Advenier AS, Decaussin-Petrucci M, Mege-Lechevallier F, Lantier P, Granier G, Ruffion A (2014) p16 INK4a overexpression and p16/Ki-67 dual labeling versus conventional urinary cytology in the evaluation of urothelial carcinoma. Cancer Cytopathol 122(3):211–220. https://doi.org/10.1002/cncy.21376

    Article  CAS  PubMed  Google Scholar 

  178. Rebouissou S, Herault A, Letouze E, Neuzillet Y, Laplanche A, Ofualuka K, Maille P, Leroy K, Riou A, Lepage ML, Vordos D, de la Taille A, Denoux Y, Sibony M, Guyon F, Lebret T, Benhamou S, Allory Y, Radvanyi F (2012) CDKN2A homozygous deletion is associated with muscle invasion in FGFR3-mutated urothelial bladder carcinoma. J Pathol 227(3):315–324. https://doi.org/10.1002/path.4017

    Article  CAS  PubMed  Google Scholar 

  179. Cazier JB, Rao SR, McLean CM, Walker AK, Wright BJ, Jaeger EE, Kartsonaki C, Marsden L, Yau C, Camps C, Kaisaki P, Oxford-Illumina WGSC, Taylor J, Catto JW, Tomlinson IP, Kiltie AE, Hamdy FC (2014) Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat Commun 5:3756. https://doi.org/10.1038/ncomms4756

    Article  CAS  PubMed  Google Scholar 

  180. Lv S, Turlova E, Zhao S, Kang H, Han M, Sun HS (2014) Prognostic and clinicopathological significance of survivin expression in bladder cancer patients: a meta-analysis. Tumour Biol 35(2):1565–1574. https://doi.org/10.1007/s13277-013-1216-y

    Article  CAS  PubMed  Google Scholar 

  181. Mizutani Y, Katsuoka Y, Bonavida B (2012) Low circulating serum levels of second mitochondria-derived activator of caspase (Smac/DIABLO) in patients with bladder cancer. Int J Oncol 40(4):1246–1250. https://doi.org/10.3892/ijo.2012.1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rachakonda PS, Hosen I, de Verdier PJ, Fallah M, Heidenreich B, Ryk C, Wiklund NP, Steineck G, Schadendorf D, Hemminki K, Kumar R (2013) TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA 110(43):17426–17431. https://doi.org/10.1073/pnas.1310522110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kong X, Ball AR Jr, Pham HX, Zeng W, Chen HY, Schmiesing JA, Kim JS, Berns M, Yokomori K (2014) Distinct functions of human cohesin-SA1 and cohesin-SA2 in double-strand break repair. Mol Cell Biol 34(4):685–698. https://doi.org/10.1128/MCB.01503-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ghatalia P, Zibelman M, Geynisman DM, Plimack E (2018) Approved checkpoint inhibitors in bladder cancer: which drug should be used when? Ther Adv Med Oncol 10:1758835918788310. https://doi.org/10.1177/1758835918788310

  185. Lee EJ, Lee SJ, Kim S, Cho SC, Choi YH, Kim WJ, Moon SK (2013) Interleukin-5 enhances the migration and invasion of bladder cancer cells via ERK1/2-mediated MMP-9/NF-κB/AP-1 pathway: involvement of the p21WAF1 expression. Cell Signal 25(10):2025–2038. https://doi.org/10.1016/j.cellsig.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  186. Reis ST, Leite KR, Piovesan LF, Pontes-Junior J, Viana NI, Abe DK, Crippa A, Moura CM, Adonias SP, Srougi M, Dall’Oglio MF (2012) Increased expression of MMP-9 and IL-8 are correlated with poor prognosis of Bladder cancer. BMC Urol 12:18. https://doi.org/10.1186/1471-2490-12-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Lee SJ, Cho SC, Lee EJ, Kim S, Lee SB, Lim JH, Choi YH, Kim WJ, Moon SK (2013) Interleukin-20 promotes migration of bladder cancer cells through extracellular signal-regulated kinase (ERK)-mediated MMP-9 protein expression leading to nuclear factor (NF-kappaB) activation by inducing the up-regulation of p21(WAF1) protein expression. J Biol Chem 288(8):5539–5552. https://doi.org/10.1074/jbc.M112.410233

    Article  CAS  PubMed  Google Scholar 

  188. Sidaway P (2015) Bladder cancer: urinary EGFR and EpCAM predict cancer-specific survival. Nat Rev Urol 12(4):184. https://doi.org/10.1038/nrurol.2015.55

    Article  PubMed  Google Scholar 

  189. McConkey DJ, Choi W, Marquis L, Martin F, Williams MB, Shah J, Svatek R, Das A, Adam L, Kamat A, Siefker-Radtke A, Dinney C (2009) Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev 28(3–4):335–344. https://doi.org/10.1007/s10555-009-9194-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Monteiro-Reis S, Lobo J, Henrique R, Jeronimo C (2019) Epigenetic mechanisms influencing epithelial to mesenchymal transition in Bladder cancer. Int J Mol Sci 20(2). https://doi.org/10.3390/ijms20020297

  191. Padrao NA, Monteiro-Reis S, Torres-Ferreira J, Antunes L, Leca L, Montezuma D, Ramalho-Carvalho J, Dias PC, Monteiro P, Oliveira J, Henrique R, Jeronimo C (2017) MicroRNA promoter methylation: a new tool for accurate detection of urothelial carcinoma. Br J Cancer 116(5):634–639. https://doi.org/10.1038/bjc.2016.454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Oliveira AI, Jeronimo C, Henrique R (2012) Moving forward in bladder cancer detection and diagnosis: the role of epigenetic biomarkers. Expert Rev Mol Diagn 12(8):871–878. https://doi.org/10.1586/erm.12.114

    Article  CAS  PubMed  Google Scholar 

  193. Kandimalla R, van Tilborg AA, Zwarthoff EC (2013) DNA methylation-based biomarkers in bladder cancer. Nat Rev Urol 10(6):327–335. https://doi.org/10.1038/nrurol.2013.89

    Article  CAS  PubMed  Google Scholar 

  194. Lonergan PE, Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10:20. https://doi.org/10.4103/1477-3163.83937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Shiota M, Takeuchi A, Yokomizo A, Kashiwagi E, Tatsugami K, Kuroiwa K, Naito S (2012) Androgen receptor signaling regulates cell growth and vulnerability to doxorubicin in bladder cancer. J Urol 188(1):276–286. https://doi.org/10.1016/j.juro.2012.02.2554

    Article  CAS  PubMed  Google Scholar 

  196. Yeh CR, Hsu I, Song W, Chang H, Miyamoto H, Xiao GQ, Li L, Yeh S (2015) Fibroblast ERα promotes bladder cancer invasion via increasing the CCL1 and IL-6 signals in the tumor microenvironment. Am J Cancer Res 5(3):1146–1157

    PubMed  PubMed Central  Google Scholar 

  197. Hsu I, Yeh CR, Slavin S, Miyamoto H, Netto GJ, Tsai YC, Muyan M, Wu XR, Messing EM, Guancial EA, Yeh S (2014) Estrogen receptor alpha prevents bladder cancer via INPP4B inhibited akt pathway in vitro and in vivo. Oncotarget 5(17):7917–7935. https://doi.org/10.18632/oncotarget.1421

    Article  PubMed  PubMed Central  Google Scholar 

  198. Godoy G, Gakis G, Smith CL, Fahmy O (2016) Effects of androgen and estrogen receptor signaling pathways on Bladder cancer initiation and progression. Bladder Cancer 2(2):127–137. https://doi.org/10.3233/BLC-160052

    Article  PubMed  PubMed Central  Google Scholar 

  199. Mork M, Hubosky SG, Roupret M, Margulis V, Raman J, Lotan Y, O’Brien T, You N, Shariat SF, Matin SF (2015) Lynch syndrome: a primer for urologists and panel recommendations. J Urol 194(1):21–29. https://doi.org/10.1016/j.juro.2015.02.081

    Article  PubMed  Google Scholar 

  200. Monteiro-Reis S, Leca L, Almeida M, Antunes L, Monteiro P, Dias PC, Morais A, Oliveira J, Henrique R, Jeronimo C (2014) Accurate detection of upper tract urothelial carcinoma in tissue and urine by means of quantitative GDF15, TMEFF2 and VIM promoter methylation. Eur J Cancer 50(1):226–233. https://doi.org/10.1016/j.ejca.2013.08.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

JL is supported by an FCT—Fundação para a Ciência e Tecnologia—fellowship (SFRH/BD/132751/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Henrique .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lobo, J., Henrique, R. (2020). Signaling Pathways Involved in Kidney and Urinary Tract Physiology and Pathology. In: Silva, J.V., Freitas, M.J., Fardilha, M. (eds) Tissue-Specific Cell Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-44436-5_6

Download citation

Publish with us

Policies and ethics