Skip to main content

Signaling Pathways Governing Activation of Innate Immune Cells

  • Chapter
  • First Online:
Tissue-Specific Cell Signaling

Abstract

In accordance to their functions, most cells from the innate immune system are equipped with multiple receptors that sense invading pathogens and endogenous danger signals resultant from damaged cells. Recognition of such “alarm signals” triggers complex signaling pathways that involve the recruitment of adapter molecules to the receptors and consequent activation of transducers such as protein kinases. Finally, these cascades culminate in the nuclear translocation of transcription factors that control the expression of inflammatory effector molecules like cytokines, chemokines and enzymes involved in oxidative burst and prostaglandin/leukotriene synthesis. Also, Natural Killer (NK) cells, a particular type of inate immune cells, express multiple activating and inhibitory receptors that act in concert to capacitate them to directly recognize and destroy transformed or viraly infected cells, to secrete cytokines or both. The knowledge on these intricate signaling networks is crucial for the comprehension of the physiopathology of inflammatory diseases as well as for identification of possible therapeutical targets. In this chapter we provide an overview of the transduction cascades triggered following danger sensing by innate immune cells, as well as examples evidencing the impact of their malfunction to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

AICL:

Activation-induced C-type lectin

AIM:

Absent-in-melanoma

Akt:

Protein kinase B

ALR:

AIM-like receptors

AMP:

Adenosine monophosphate

AP-1:

Activator protein 1

ASC:

Apoptosis-associated speck-like protein containing CARD

ATP:

Adenosine triphosphate

BCG:

Bacillus Calmette-Guérin

Bcl:

B cell lymphoma

BDCA:

Blood dendritic cell antigen

BIR:

Baculovirus inhibitor repeat

c-Abl:

Abelson tyrosine kinase

CARD:

Caspase recruitment domain protein

CBP:

CREB-binding protein

CCL:

C-C motif chemokine ligand

CD:

Cluster of differentiation

Cdc42:

Cell division cycle 42

cGAMP:

Cyclic-GMP-AMP

cGAS:

cGAMP synthase

CLEC:

C-type lectin-like receptors

CLR:

C-type lectin receptors

CpG ODN:

CpG oligodeoxynucleotides

CRACC:

CD2-like receptor activating cytotoxic cells

CRD:

Carbohydrate recognition domain

CREB:

cAMP response element binding

CTLD:

C-type lectin-like domain

DAI:

DNA-dependent activator of interferon-regulatory factors

DAMPs:

Damage-associated molecular patterns

DAP10, 12:

DNAX activating proteins of 10 kDa, 12 kDa

DC:

Dendritic cell

DCAL-2:

Dendritic cell-associated C-type lectin 2

DCIR:

DC-immunoreceptor

DC-SIGN:

DC-specific intercellular adhesion molecule (ICAM)-3 grabbing nonintegrin

DDX:

DEAD-box helicase 41

DDX60:

DExD/H-box helicase 60

Dectin:

DC-associated C-type lectin-1

DHX:

DExH-box helicase 9

DHX36:

DEAH-box helicase 36

DNA:

Deoxyribonucleic acid

DNAM-1:

DNAX accessory molecule-1

DNAPK:

DNA-dependent protein kinase

dsDNA:

Double stranded DNA

dsRNA:

Double stranded RNA

EAT-2:

Ewing’s sarcoma-associated transcript-2

EBV:

Epstein-Barr vírus

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinase

FADD:

Fas-associated protein with death domain

FcRγ:

Fc receptor γ chain

GM-CSF:

Granulocyte and macrophage colony stimulating factor

GMP:

Guanosine monophosphate

Grb2:

Growth factor receptor-bound protein 2

HIN:

Hematopoietic interferon-inducible nuclear antigens

HIV-1:

Human immunodeficiency virus 1

HLA:

Human leukocyte antigen

HMGB1:

High-mobility group box 1

hMGL:

Human Monoglyceride lipase

HMGN1:

High Mobility Group Nucleosome Binding Domain 1

HSPs:

Heat-shock proteins

ICAM:

Intercellular adhesion molecule

iE-DAP:

γ-D-glutamyl-meso-diaminopimelic acid

IFI16:

IFN-inducible 16

IFN:

Interferon

IgG:

Immunoglobulin G

IKK:

IκB kinase complex

IL:

Interleukin

ILCs:

Innate lymphoid cells

IRAK:

IL-1 receptor-associated kinase protein

IRF:

Interferon regulatory factor

IRp60:

Inhibitory receptor protein

ISG:

IFN-inducible gene

ITAM:

Immunoreceptor tyrosine-based activation motif

ITIM:

Immunoreceptor tyrosine-based inhibitory motifs

ITSM:

Immunoreceptor tyrosine-based switch motifs

IκB:

Inhibitor of nuclear factor kappa B

JNK:

Jun N-terminal kinase

KACL:

Keratinocyte-associated C-type lectin

KIR:

Killer cell immunoglobulin-like receptor

KLRG1:

Killer cell lectin-like receptor G1

LDL:

Low-density lipoproteins

LFA:

Lymphocyte function associated antigen

LIR:

Leukocyte inhibitory receptor

LMW:

Low molecular weight

LOX-1:

Lectin-like oxidized LDL receptor-1

LPG2:

Laboratory of genetics and physiology 2

LPS:

Lipopolysaccharide

LRR:

Leucine-rich repeat

MAL:

MyD88-adaptor-like

MALT:

Mucosa associated lymphoid tissue translocation protein

MAPK:

Mitogen-activated protein kinase

MAVS:

Mitochondrial antiviral signalling protein

MCL:

Macrophage C-type lectin

MDA5:

Melanoma differentiation-associated gene 5

MDL-1:

Myeloid DAP12-associating lectin

MDP:

Muramyl dipeptide

MEK:

MAPK/ERK kinase

MHC:

Major histocompatibility complex

MICA:

MHC class I chain-related A chain

MICB:

MHC class I chain-related B chain

MICL:

Myeloid inhibitory C-type lectin-like receptor

Mincle:

Macrophage-inducible C-type lectin

MIP:

Macrophage inflammatory protein

MNDA:

Myeloid cell nuclear differentiation antigen

MR:

Mannose receptor

MRE11:

Meiotic recombination 11 homolog A

MTOC:

Microtubule organizing centre

mTOR:

Mechanistic target of rapamycin

MyD88:

Myeloid differentiation primary response gene 88

NAIP:

NLR family, apoptosis inhibitory protein

Nck:

Non-catalytic region of tyrosine kinase adaptor protein 1

ND:

Not determined

NFAT:

Nuclear factor of activated T-cells

NF-κB:

Nuclear factor-kappa B

NIK:

NF-κB-inducing kinase

NK:

Natural Killer

NKG2D:

Natural Killer group 2D

NKR-P1:

Killer cell lectin-like receptor subfamily B, member 1

NLR:

NOD-like receptors

NLRC:

NOD-like receptor family CARD domain containing

NLRP:

Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing

NOD:

Nucleotide-oligomerization domain

NTB-A:

NK, T and B cell antigen

PAMPs:

Pathogen-associated molecular patterns

PI3K:

Phosphoinositide 3-kinase

PLC-γ:

Phospholipase C gamma

PRRs:

Pattern-recognition receptors

PYD:

Pyrin

PYHIN1:

Pyrin and HIN domain-containing protein

Rac-1:

Ras-related C3 botulinum toxin substrate 1

RANTES:

Regulated upon activation, normal T-cell expressed, and secreted

RICK:

RIP-like interacting CLARP kinase

RIG-1:

Retinoic acid-inducible gene-1

RIP-1:

Receptor interacting kinase 1

RLR:

RIG-1-like receptors

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

SAP:

SLAM-associated protein

SECTM1:

Secreted and transmembrane 1

SH2:

Src homology 2

SHIP-1:

SH2 domain-containing inositol 5′ phosphatase-1

SHP:

Src homology 2 (SH2) domain-containing phosphatases

SIGNR1:

Specific ICAM-3 grabbing nonintegrin-related 1

SLAM:

Signaling lymphocytic activating molecule

SLP-76:

SH2 domain containing leukocyte phosphoprotein of 76 kD

ssRNA:

Single-stranded RNA

STING:

Stimulator of interferon genes

Syk:

Spleen tyrosine kinase

TAB:

TAK1 binding protein

TAK1:

TGF-beta-activated kinase 1

TBK1:

TANK binding kinase 1

TCR:

T cell receptor

TGF:

Transforming growth factor

TICAM:

TIR-domain containing adaptor molecule

TIR:

Toll/IL-1R homology

TIRAP:

TIR-containing adaptor protein

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

TRADD:

TNF receptor-associated death domain

TRAF:

TNFR-associated factor 6

TRAIL:

TNF-related apoptosis-inducing ligand

TRAM:

TRIF-related adaptor molecule

TRIF:

TIR-containing adaptor inducing IFN-β

ULBP:

UL-16 binding protein

WAS:

Wiskott-Aldrich syndrome

WASP:

Wiskott-Aldrich syndrome protein

WIPF1:

WAS/WASL interacting protein family member 1

XLP:

X-linked lymphoproliferative disease

ZAP70:

Zeta-chain-associated protein kinase 70

References

  1. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Spits H (2018) Innate lymphoid cells: 10 years on. Cell 174:1054–1066. https://doi.org/10.1016/j.cell.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  2. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. https://doi.org/10.1016/j.cell.2010.01.022

    Article  CAS  PubMed  Google Scholar 

  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. https://doi.org/10.1016/J.CELL.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  4. Vénéreau E, Ceriotti C, Bianchi ME (2015) DAMPs from cell death to new life. Front Immunol 6:422. https://doi.org/10.3389/fimmu.2015.00422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837. https://doi.org/10.1038/nri2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Q, Sun L, Chen ZJ (2016) Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol 17:1142–1149. https://doi.org/10.1038/ni.3558

    Article  CAS  PubMed  Google Scholar 

  7. Miguel B, Celeste M, Teresa M (2012) Pathogen strategies to evade innate immune response: a signaling point of view. Protein Kinases. https://doi.org/10.5772/37771

    Article  Google Scholar 

  8. Sancho D, Reis e Sousa C (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Ann Rev Immunol 30:491–529. https://doi.org/10.1146/annurev-immunol-031210-101352

  9. Kell AM, Gale M (2015) RIG-I in RNA virus recognition. Virology 479–480:110–121. https://doi.org/10.1016/j.virol.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  10. Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247. https://doi.org/10.1038/ni.1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanneganti T-D, Lamkanfi M, Núñez G (2007) Intracellular NOD-like receptors in host defense and disease. Immunity 27:549–559. https://doi.org/10.1016/j.immuni.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  12. Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee J-H, Bishai WR (2015) A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21:401–406. https://doi.org/10.1038/nm.3813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma Z, Damania B (2016) The cGAS-STINg defense pathway and its counteraction by viruses. Cell Host Microbe 19:150–158. https://doi.org/10.1016/j.chom.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caruso R, Warner N, Inohara N, Núñez G (2014) NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41:898–908. https://doi.org/10.1016/j.immuni.2014.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Botos I, Segal DM, Davies DR (2011) The structural biology of Toll-like receptors. Structure 19:447–459. https://doi.org/10.1016/j.str.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384. https://doi.org/10.1038/ni.1863

    Article  CAS  PubMed  Google Scholar 

  17. Kawasaki T, Kawai T (2014) Toll-like receptor signaling pathways. Front Immunol 5:461. https://doi.org/10.3389/fimmu.2014.00461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin S-C, Lo Y-C, Wu H (2010) Helical assembly in the MyD88–IRAK4–IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–890. https://doi.org/10.1038/nature09121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S (2008) Sequential control of toll-like receptor–dependent responses by IRAK1 and IRAK2. Nat Immunol 9:684–691. https://doi.org/10.1038/ni.1606

    Article  CAS  PubMed  Google Scholar 

  20. Xia Z-P, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ (2009) Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461:114–119. https://doi.org/10.1038/nature08247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science (80–) 301:640–643. https://doi.org/10.1126/science.1087262

  22. Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T (2003) TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–mediated interferon-β induction. Nat Immunol 4:161–167. https://doi.org/10.1038/ni886

    Article  CAS  PubMed  Google Scholar 

  23. Häcker H, Redecke V, Blagoev B, Kratchmarova I, Hsu L-C, Wang GG, Kamps MP, Raz E, Wagner H, Häcker G, Mann M, Karin M (2006) Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204–207. https://doi.org/10.1038/nature04369

    Article  CAS  PubMed  Google Scholar 

  24. Brown GD, Willment JA, Whitehead L (2018) C-type lectins in immunity and homeostasis. Nat Rev Immunol 18:374–389. https://doi.org/10.1038/s41577-018-0004-8

    Article  CAS  PubMed  Google Scholar 

  25. Osorio F, Reis e Sousa C (2011) Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34:651–664. https://doi.org/10.1016/j.immuni.2011.05.001

  26. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650. https://doi.org/10.1016/J.IMMUNI.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  27. Mócsai A, Ruland J, Tybulewicz VLJ (2010) The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 10:387–402. https://doi.org/10.1038/nri2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33–43. https://doi.org/10.1038/nri1745

    Article  CAS  PubMed  Google Scholar 

  29. Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, Förster I, Ruland J (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442:651–656. https://doi.org/10.1038/nature04926

    Article  CAS  PubMed  Google Scholar 

  30. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J, Reis e Sousa C (2007) Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638. https://doi.org/10.1038/ni1460

  31. Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479. https://doi.org/10.1038/nri2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu S, Huo J, Lee K-G, Kurosaki T, Lam K-P (2009) Phospholipase Cγ2 is critical for Dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J Biol Chem 284:7038–7046. https://doi.org/10.1074/jbc.M806650200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goodridge HS, Simmons RM, Underhill DM (2007) Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 178:3107–3115

    Article  CAS  PubMed  Google Scholar 

  34. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschläger N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V, Mocsai A, Tschopp J, Ruland J (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436. https://doi.org/10.1038/nature07965

    Article  CAS  PubMed  Google Scholar 

  35. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SCM, Geijtenbeek TBH (2009) Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 10:203–213. https://doi.org/10.1038/ni.1692

    Article  CAS  PubMed  Google Scholar 

  36. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, Fujikado N, Kusaka T, Kubo S, Chung S, Komatsu R, Miura N, Adachi Y, Ohno N, Shibuya K, Yamamoto N, Kawakami K, Yamasaki S, Saito T, Akira S, Iwakura Y (2010) Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:681–691. https://doi.org/10.1016/j.immuni.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  37. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Groß O, Verbeek JS, Ruland J, Tybulewicz V, Brown GD, Moita LF, Taylor PR, Reis e Sousa C (2009) Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206:2037–2051. https://doi.org/10.1084/jem.20082818

  38. Ritter M, Gross O, Kays S, Ruland J, Nimmerjahn F, Saijo S, Tschopp J, Layland LE, Prazeres da Costa C (2010) Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc Natl Acad Sci USA 107:20459–20464. https://doi.org/10.1073/pnas.1010337107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chang T-H, Huang J-H, Lin H-C, Chen W-Y, Lee Y-H, Hsu L-C, Netea MG, Ting JP-Y, Wu-Hsieh BA (2017) Dectin-2 is a primary receptor for NLRP3 inflammasome activation in dendritic cell response to Histoplasma capsulatum. PLoS Pathog 13:e1006485. https://doi.org/10.1371/journal.ppat.1006485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sato K, Yang X, Yudate T, Chung J-S, Wu J, Luby-Phelps K, Kimberly RP, Underhill D, Cruz PD, Ariizumi K (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J Biol Chem 281:38854–38866. https://doi.org/10.1074/jbc.M606542200

    Article  CAS  PubMed  Google Scholar 

  41. Bi L, Gojestani S, Wu W, Hsu Y-MS, Zhu J, Ariizumi K, Lin X (2010) CARD9 mediates dectin-2-induced IκBα kinase ubiquitination leading to activation of NF-κB in response to stimulation by the hyphal form of Candida albicans. J Biol Chem 285:25969–25977. https://doi.org/10.1074/jbc.M110.131300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kanazawa N, Okazaki T, Nishimura H, Tashiro K, Inaba K, Miyachi Y (2002) DCIR acts as an inhibitory receptor depending on its immunoreceptor tyrosine-based inhibitory motif. J Invest Dermatol 118:261–266. https://doi.org/10.1046/j.0022-202x.2001.01633.x

    Article  CAS  PubMed  Google Scholar 

  43. Zhao X, Shen Y, Hu W, Chen J, Wu T, Sun X, Yu J, Wu T, Chen W (2015) DCIR negatively regulates CpG-ODN-induced IL-1β and IL-6 production. Mol Immunol 68:641–647. https://doi.org/10.1016/j.molimm.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  44. Meyer-Wentrup F, Cambi A, Joosten B, Looman MW, de Vries IJM, Figdor CG, Adema GJ (2009) DCIR is endocytosed into human dendritic cells and inhibits TLR8-mediated cytokine production. J Leukoc Biol 85:518–525. https://doi.org/10.1189/jlb.0608352

    Article  CAS  PubMed  Google Scholar 

  45. Lambert AA, Barabe F, Gilbert C, Tremblay MJ (2011) DCIR-mediated enhancement of HIV-1 infection requires the ITIM-associated signal transduction pathway. Blood 117:6589–6599. https://doi.org/10.1182/blood-2011-01-331363

    Article  CAS  PubMed  Google Scholar 

  46. Bloem K, Vuist IM, van den Berk M, Klaver EJ, van Die I, Knippels LMJ, Garssen J, García-Vallejo JJ, van Vliet SJ, van Kooyk Y (2014) DCIR interacts with ligands from both endogenous and pathogenic origin. Immunol Lett 158:33–41. https://doi.org/10.1016/j.imlet.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  47. Nagae M, Ikeda A, Hanashima S, Kojima T, Matsumoto N, Yamamoto K, Yamaguchi Y (2016) Crystal structure of human dendritic cell inhibitory receptor C-type lectin domain reveals the binding mode with N-glycan. FEBS Lett 590:1280–1288. https://doi.org/10.1002/1873-3468.12162

    Article  CAS  PubMed  Google Scholar 

  48. Švajger U, Anderluh M, Jeras M, Obermajer N (2010) C-type lectin DC-SIGN: an adhesion, signalling and antigen-uptake molecule that guides dendritic cells in immunity. Cell Signal 22:1397–1405. https://doi.org/10.1016/j.cellsig.2010.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gringhuis SI, den Dunnen J, Litjens M, van het Hof B, van Kooyk Y, Geijtenbeek TBH (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26:605–616. https://doi.org/10.1016/j.immuni.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  50. Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TBH (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat Immunol 10:1081–1088. https://doi.org/10.1038/ni.1778

    Article  CAS  PubMed  Google Scholar 

  51. Hovius JWR, de Jong MAWP, den Dunnen J, Litjens M, Fikrig E, van der Poll T, Gringhuis SI, Geijtenbeek TBH (2008) Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog 4:e31. https://doi.org/10.1371/journal.ppat.0040031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737. https://doi.org/10.1038/ni1087

    Article  CAS  PubMed  Google Scholar 

  53. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988. https://doi.org/10.1038/ni1243

    Article  CAS  PubMed  Google Scholar 

  54. Dixit E, Boulant S, Zhang Y, Lee ASY, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:668–681. https://doi.org/10.1016/j.cell.2010.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seth RB, Sun L, Ea C-K, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682. https://doi.org/10.1016/j.cell.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi K, Kawai T, Kumar H, Sato S, Yonehara S, Akira S (2006) Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J Immunol 176:4520–4524

    Article  CAS  PubMed  Google Scholar 

  57. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschläger N, Schlee M, Rothenfusser S, Barchet W, Kato H, Akira S, Inoue S, Endres S, Peschel C, Hartmann G, Hornung V, Ruland J (2010) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat Immunol 11:63–69. https://doi.org/10.1038/ni.1824

    Article  CAS  PubMed  Google Scholar 

  58. Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujita T, Akira S, Takeuchi O (2010) LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci 107:1512–1517. https://doi.org/10.1073/pnas.0912986107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nuñez G, Inohara N (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4:702–707. https://doi.org/10.1038/ni945

    Article  CAS  PubMed  Google Scholar 

  60. Hasegawa M, Yang K, Hashimoto M, Park J-H, Kim Y-G, Fujimoto Y, Nuñez G, Fukase K, Inohara N (2006) Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments. J Biol Chem 281:29054–29063. https://doi.org/10.1074/jbc.M602638200

    Article  CAS  PubMed  Google Scholar 

  61. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ (2003) Nod2 is a general sensor of peptidoglycan through Muramyl Dipeptide (MDP) detection. J Biol Chem 278:8869–8872. https://doi.org/10.1074/jbc.C200651200

    Article  CAS  PubMed  Google Scholar 

  62. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J Biol Chem 276:4812–4818. https://doi.org/10.1074/jbc.M008072200

    Article  CAS  PubMed  Google Scholar 

  63. Windheim M, Lang C, Peggie M, Plater LA, Cohen P (2007) Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J 404:179–190. https://doi.org/10.1042/BJ20061704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Girardin SE, Tournebize R, Mavris M, Page AL, Li X, Stark GR, Bertin J, DiStefano PS, Yaniv M, Sansonetti PJ, Philpott DJ (2001) CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep 2:736–742. https://doi.org/10.1093/embo-reports/kve155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park J-H, Kim Y-G, McDonald C, Kanneganti T-D, Hasegawa M, Body-Malapel M, Inohara N, Núñez G (2007) RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 178:2380–2386

    Article  CAS  PubMed  Google Scholar 

  66. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232. https://doi.org/10.1038/nature04515

    Article  CAS  PubMed  Google Scholar 

  67. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218. https://doi.org/10.1038/nature02664

    Article  CAS  PubMed  Google Scholar 

  68. Lugrin J, Martinon F (2018) The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev 281:99–114. https://doi.org/10.1111/imr.12618

    Article  CAS  PubMed  Google Scholar 

  69. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518. https://doi.org/10.1038/nature07725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513. https://doi.org/10.1038/nature07710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9:363–375. https://doi.org/10.1016/j.chom.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11:997–1004. https://doi.org/10.1038/ni.1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792. https://doi.org/10.1038/nature08476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Röhl I, Hopfner K-P, Ludwig J, Hornung V (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498:380–384. https://doi.org/10.1038/nature12306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, García-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–695. https://doi.org/10.1038/nature12862

    Article  CAS  PubMed  Google Scholar 

  76. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, Matsunaga K, Kageyama S, Omori H, Noda T, Yamamoto N, Kawai T, Ishii K, Takeuchi O, Yoshimori T, Akira S (2009) Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci USA 106:20842–20846. https://doi.org/10.1073/pnas.0911267106

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sun W, Li Y, Chen L, Chen H, You F, Zhou X, Zhou Y, Zhai Z, Chen D, Jiang Z (2009) ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci USA 106:8653–8658. https://doi.org/10.1073/pnas.0900850106

    Article  PubMed  PubMed Central  Google Scholar 

  78. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu Y-T, Grishin NV, Chen ZJ (2015) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:aaa2630. https://doi.org/10.1126/science.aaa2630

  79. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678. https://doi.org/10.1038/nature07317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Collins AC, Cai H, Li T, Franco LH, Li X-D, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, Shiloh MU (2015) Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17:820–828. https://doi.org/10.1016/j.chom.2015.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular listeria monocytogenes activates a host type I interferon response. Science (80–) 328:1703–1705. https://doi.org/10.1126/science.1189801

  82. Moretti J, Roy S, Bozec D, Martinez J, Chapman JR, Ueberheide B, Lamming DW, Chen ZJ, Horng T, Yeretssian G, Green DR, Blander JM (2017) STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171:809–823.e13. https://doi.org/10.1016/j.cell.2017.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, Hayakawa Y, Vance RE (2011) STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–518. https://doi.org/10.1038/nature10429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Orange JS, Ballas ZK (2006) Natural killer cells in human health and disease. Clin Immunol 118:1–10

    Article  CAS  PubMed  Google Scholar 

  85. Biron CA, Byron KS, Sullivan JL (1989) Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320:1731–1735

    Article  CAS  PubMed  Google Scholar 

  86. Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4:1545–1558

    Article  CAS  PubMed  Google Scholar 

  87. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    Article  CAS  PubMed  Google Scholar 

  88. Wallin RP, Screpanti V, Michaelsson J, Grandien A, Ljunggren HG (2003) Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol 33:2727–2735

    Article  CAS  PubMed  Google Scholar 

  89. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-γ. Ann Rev Immunol 15:749–795

    Article  CAS  Google Scholar 

  90. Orange JS, Harris KE, Andzelm MM, Valter MM, Geha RS, Strominger JL (2003) The mature activating natural killer cell immunologic synapse is formed in distinct stages. Proc Natl Acad Sci USA 100:14151–14156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wulfing C, Purtic B, Klem J, Schatzle JD (2003) Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing. Proc Natl Acad Sci USA 100:7767–7772

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:273–291

    Article  Google Scholar 

  93. Carpen O, Virtanen I, Saksela E (1982) Ultrastructure of human natural killer cells: nature of the cytolytic contacts in relation to cellular secretion. J Immunol 128:2691–2697

    Article  CAS  PubMed  Google Scholar 

  94. Carpen O, Virtanen I, Lehto VP, Saksela E (1983) Polarization of NK cell cytoskeleton upon conjugation with sensitive target cells. J Immunol 131:2695–2698

    Article  CAS  PubMed  Google Scholar 

  95. Kupfer A, Dennert G, Singer SJ (1983) Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc Natl Acad Sci USA 80:7224–7228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bossi G, Griffiths GM (2005) CTL secretory lysosomes: biogenesis and secretion of a harmful organelle. Semin Immunol 17:87–94

    Article  CAS  PubMed  Google Scholar 

  97. Eriksson M, Leitz G, Fallman E, Axner O, Ryan JC, Nakamura MC, Sentman CL (1999) Inhibitory receptors alter natural killer cell interactions with target cells yet allow simultaneous killing of susceptible targets. J Exp Med 190:1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bryceson YT, March ME, Barber DF, Ljunggren HG, Long EO (2005) Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J Exp Med 202:1001–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Ann Rev Immunol 31:227–258. https://doi.org/10.1146/annurev-immunol-020711-075005

    Article  CAS  Google Scholar 

  100. Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23:255–259. https://doi.org/10.1038/sj.emboj.7600019

    Article  CAS  PubMed  Google Scholar 

  101. Lanier LL (2005) NK cell recognition. Ann Rev Immunol 23:225–274. https://doi.org/10.1146/annurev.immunol.23.021704.115526

    Article  CAS  Google Scholar 

  102. Smith-Garvin JE, Koretzky GA, Jordan MS (2009) T cell activation. Ann Rev Immunol 27:591–619. https://doi.org/10.1146/annurev.immunol.021908.132706

    Article  CAS  Google Scholar 

  103. Kim HS, Long EO (2012) Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells. Sci Signal 5:ra49. https://doi.org/10.1126/scisignal.2002754

  104. Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science (80–) 285:730–732

    Google Scholar 

  105. Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M (2002) NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 3:1150–1155. https://doi.org/10.1038/ni857

    Article  CAS  PubMed  Google Scholar 

  106. Billadeau DD, Upshaw JL, Schoon RA, Dick CJ, Leibson PJ (2003) NKG2D-DAP10 triggers human NK cell-mediated killing via a Syk-independent regulatory pathway. Nat Immunol 4:557–564. https://doi.org/10.1038/ni929

    Article  CAS  PubMed  Google Scholar 

  107. Graham DB, Cella M, Giurisato E, Fujikawa K, Miletic AV, Kloeppel T, Brim K, Takai T, Shaw AS, Colonna M, Swat W (2006) Vav1 controls DAP10-mediated natural cytotoxicity by regulating actin and microtubule dynamics. J Immunol 177:2349–2355

    Article  CAS  PubMed  Google Scholar 

  108. Upshaw JL, Arneson LN, Schoon RA, Dick CJ, Billadeau DD, Leibson PJ (2006) NKG2D-mediated signaling requires a DAP10-bound Grb2-Vav1 intermediate and phosphatidylinositol-3-kinase in human natural killer cells. Nat Immunol 7:524–532. https://doi.org/10.1038/ni1325

    Article  CAS  PubMed  Google Scholar 

  109. Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD (2009) PI3K links NKG2D signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule secretion. J Immunol 182:6933–6942. https://doi.org/10.4049/jimmunol.0803840

    Article  CAS  PubMed  Google Scholar 

  110. Veillette A (2006) NK cell regulation by SLAM family receptors and SAP-related adapters. Immunol Rev 214:22–34. https://doi.org/10.1111/j.1600-065X.2006.00453.x

    Article  CAS  PubMed  Google Scholar 

  111. Dong Z, Cruz-Munoz ME, Zhong MC, Chen R, Latour S, Veillette A (2009) Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nat Immunol 10:973–980. https://doi.org/10.1038/ni.1763

    Article  CAS  PubMed  Google Scholar 

  112. Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, Nakauchi H, Shibuya A (1999) Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 11:615–623

    Article  CAS  PubMed  Google Scholar 

  113. Dennehy KM, Klimosch SN, Steinle A (2011) Cutting edge: NKp80 uses an atypical hemi-ITAM to trigger NK cytotoxicity. J Immunol 186:657–661. https://doi.org/10.4049/jimmunol.0904117

    Article  CAS  PubMed  Google Scholar 

  114. Nurmi SM, Autero M, Raunio AK, Gahmberg CG, Fagerholm SC (2007) Phosphorylation of the LFA-1 integrin beta2-chain on Thr-758 leads to adhesion, Rac-1/Cdc42 activation, and stimulation of CD69 expression in human T cells. J Biol Chem 282:968–975

    Article  CAS  PubMed  Google Scholar 

  115. March ME, Long EO (2011) beta2 integrin induces TCRzeta-Syk-phospholipase C-gamma phosphorylation and paxillin-dependent granule polarization in human NK cells. J Immunol 186:2998–3005. https://doi.org/10.4049/jimmunol.1002438

    Article  CAS  PubMed  Google Scholar 

  116. Riteau B, Barber DF, Long EO (2003) Vav1 phosphorylation is induced by beta2 integrin engagement on natural killer cells upstream of actin cytoskeleton and lipid raft reorganization. J Exp Med 198:469–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stebbins CC, Watzl C, Billadeau DD, Leibson PJ, Burshtyn DN, Long EO (2003) Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol Cell Biol 23:6291–6299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vyas YM, Mehta KM, Morgan M, Maniar H, Butros L, Jung S, Burkhardt JK, Dupont B (2001) Spatial organization of signal transduction molecules in the NK cell immune synapses during MHC class I-regulated noncytolytic and cytolytic interactions. J Immunol 167:4358–4367

    Article  CAS  PubMed  Google Scholar 

  119. Vyas YM, Maniar H, Dupont B (2002) Cutting edge: differential segregation of the SRC homology 2-containing protein tyrosine phosphatase-1 within the early NK cell immune synapse distinguishes noncytolytic from cytolytic interactions. J Immunol 168:3150–3154

    Article  CAS  PubMed  Google Scholar 

  120. McCann FE, Vanherberghen B, Eleme K, Carlin LM, Newsam RJ, Goulding D, Davis DM (2003) The size of the synaptic cleft and distinct distributions of filamentous actin, ezrin, CD43, and CD45 at activating and inhibitory human NK cell immune synapses. J Immunol 170:2862–2870

    Article  CAS  PubMed  Google Scholar 

  121. Braud V, Jones EY, McMichael A (1997) The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur J Immunol 27:1164–1169

    Article  CAS  PubMed  Google Scholar 

  122. Valiante NM, Uhrberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andrea A, Phillips JH, Lanier LL, Parham P (1997) Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7:739–751

    Article  CAS  PubMed  Google Scholar 

  123. Parham P (2005) MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol 5:201–214

    Article  CAS  PubMed  Google Scholar 

  124. MacFarlane AW 4th, Campbell KS (2006) Signal transduction in natural killer cells. Curr Top Microbiol Immunol 298:23–57

    Google Scholar 

  125. Binstadt BA, Billadeau DD, Jevremovic D, Williams BL, Fang N, Yi T, Koretzky GA, Abraham RT, Leibson PJ (1998) SLP-76 is a direct substrate of SHP-1 recruited to killer cell inhibitory receptors. J Biol Chem 273:27518–27523

    Article  CAS  PubMed  Google Scholar 

  126. Peterson ME, Long EO (2008) Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity 29:578–588. https://doi.org/10.1016/j.immuni.2008.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu D, Peterson ME, Long EO (2012) The adaptor protein Crk controls activation and inhibition of natural killer cells. Immunity 36:600–611. https://doi.org/10.1016/j.immuni.2012.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ljunggren HG, Karre K (1990) In search of the “missing self”: MHC molecules and NK cell recognition. Immunol Today 11:237–244

    Article  CAS  PubMed  Google Scholar 

  129. Almeida CR, Davis DM (2006) Segregation of HLA-C from ICAM-1 at NK cell immune synapses is controlled by its cell surface density. J Immunol 177:6904–6910

    Article  CAS  PubMed  Google Scholar 

  130. Kaplan A, Kotzer S, Almeida CR, Kohen R, Halpert G, Salmon-Divon M, Kohler K, Hoglund P, Davis DM, Mehr R (2011) Simulations of the NK cell immune synapse reveal that activation thresholds can be established by inhibitory receptors acting locally. J Immunol 187:760–773. https://doi.org/10.4049/jimmunol.1002208

    Article  CAS  PubMed  Google Scholar 

  131. Endt J, McCann FE, Almeida CR, Urlaub D, Leung R, Pende D, Davis DM, Watzl C (2007) Inhibitory receptor signals suppress ligation-induced recruitment of NKG2D to GM1-rich membrane domains at the human NK cell immune synapse. J Immunol 178:5606–5611

    Article  CAS  PubMed  Google Scholar 

  132. Oszmiana A, Williamson DJ, Cordoba SP, Morgan DJ, Kennedy PR, Stacey K, Davis DM (2016) The size of activating and inhibitory killer Ig-like receptor nanoclusters is controlled by the transmembrane sequence and affects signaling. Cell Rep 15:1957–1972. https://doi.org/10.1016/j.celrep.2016.04.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku C-L, Chrabieh M, Mustapha IB, Ghandil P, Camcioglu Y, Vasconcelos J, Sirvent N, Guedes M, Vitor AB, Herrero-Mata MJ, Arostegui JI, Rodrigo C, Alsina L, Ruiz-Ortiz E, Juan M, Fortuny C, Yague J, Anton J, Pascal M, Chang H-H, Janniere L, Rose Y, Garty B-Z, Chapel H, Issekutz A, Marodi L, Rodriguez-Gallego C, Banchereau J, Abel L, Li X, Chaussabel D, Puel A, Casanova J-L (2008) Pyogenic Bacterial Infections in humans with MyD88 deficiency. Science (80–) 321:691–696. https://doi.org/10.1126/science.1158298

  134. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A (2003) A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med 198:1563–1572. https://doi.org/10.1084/jem.20031220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032

    Article  CAS  PubMed  Google Scholar 

  136. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morré SA, Vriend G, Williams DL, Perfect JR, Joosten LAB, Wijmenga C, van der Meer JWM, Adema GJ, Kullberg BJ, Brown GD, Netea MG (2009) Human Dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760–1767. https://doi.org/10.1056/NEJMoa0901053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Glocker E-O, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, Jamal S, Manguiat A, Rezaei N, Amirzargar AA, Plebani A, Hannesschläger N, Gross O, Ruland J, Grimbacher B (2009) A Homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361:1727–1735. https://doi.org/10.1056/NEJMoa0810719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet 29:301–305. https://doi.org/10.1038/ng756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Aksentijevich I, Nowak M, Mallah M, Chae JJ, Watford WT, Hofmann SR, Stein L, Russo R, Goldsmith D, Dent P, Rosenberg HF, Austin F, Remmers EF, Balow JE, Rosenzweig S, Komarow H, Shoham NG, Wood G, Jones J, Mangra N, Carrero H, Adams BS, Moore TL, Schikler K, Hoffman H, Lovell DJ, Lipnick R, Barron K, O’Shea JJ, Kastner DL, Goldbach-Mansky R (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–3348. https://doi.org/10.1002/art.10688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aganna E, Martinon F, Hawkins PN, Ross JB, Swan DC, Booth DR, Lachmann HJ, Bybee A, Gaudet R, Woo P, Feighery C, Cotter FE, Thome M, Hitman GA, Tschopp J, McDermott MF (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 46:2445–2452. https://doi.org/10.1002/art.10509

    Article  CAS  PubMed  Google Scholar 

  141. Rodero MP, Crow YJ (2016) Type I interferon-mediated monogenic autoinflammation: the type I interferonopathies, a conceptual overview. J Exp Med 213:2527–2538. https://doi.org/10.1084/jem.20161596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA, Goldbach-Mansky R et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518. https://doi.org/10.1056/NEJMoa1312625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar J-P, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606. https://doi.org/10.1038/35079114

    Article  CAS  PubMed  Google Scholar 

  144. Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cézard J-P, Belaiche J, Almer S, Tysk C, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel J-F, Sahbatou M, Thomas G (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603. https://doi.org/10.1038/35079107

    Article  CAS  PubMed  Google Scholar 

  145. McGovern DPB, Hysi P, Ahmad T, van Heel DA, Moffatt MF, Carey A, Cookson WOC, Jewell DP (2005) Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Hum Mol Genet 14:1245–1250. https://doi.org/10.1093/hmg/ddi135

    Article  CAS  PubMed  Google Scholar 

  146. Orange JS (2014) Natural killer cell deficiency. J Allergy Clin Immunol 132:515–525. https://doi.org/10.1016/j.jaci.2013.07.020

    Article  CAS  Google Scholar 

  147. Orange JS, Ramesh N, Remold-O’Donnell E, Sasahara Y, Koopman L, Byrne M, Bonilla FA, Rosen FS, Geha RS, Strominger JL (2002) Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci 99:11351–11356. https://doi.org/10.1073/pnas.162376099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lanzi G, Moratto D, Vairo D, Masneri S, Delmonte O, Paganini T, Parolini S, Tabellini G, Mazza C, Savoldi G, Montin D, Martino S, Tovo P, Pessach IM, Massaad MJ, Ramesh N, Porta F, Plebani A, Notarangelo LD, Geha RS, Giliani S (2012) A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J Exp Med 209:29–34. https://doi.org/10.1084/jem.20110896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mace EM (2018) Phosphoinositide-3-kinase signaling in human natural killer cells: new insights from primary immunodeficiency. Front Immunol 9:7–10. https://doi.org/10.3389/fimmu.2018.00445

    Article  CAS  Google Scholar 

  150. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK, Palendira U, Avery DT, Moens L, Cannons JL, Biancalana M, Stoddard J, Ouyang W, Frucht DM, Rao VK, Atkinson TP, Agharahimi A, Hussey AA, Folio LR, Olivier KN, Fleisher TA, Pittaluga S, Holland SM, Cohen JI, Oliveira JB, Tangye SG, Schwartzberg PL, Lenardo MJ, Uzel G (2014) Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol 15:88–97. https://doi.org/10.1038/ni.2771

    Article  CAS  PubMed  Google Scholar 

  151. Angulo I, Vadas O, Garçon F, Banham-Hall E, Plagnol V, Leahy TR, Baxendale H, Coulter T, Curtis J, Wu C, Blake-Palmer K, Perisic O, Smyth D, Maes M, Fiddler C, Juss J, Cilliers D, Markelj G, Chandra A, Farmer G, Kielkowska A, Clark J, Kracker S, Debré M, Picard C, Pellier I, Jabado N, Morris JA, Barcenas-Morales G, Fischer A, Stephens L, Hawkins P, Barrett JC, Abinun M, Clatworthy M, Durandy A, Doffinger R, Chilvers ER, Cant AJ, Kumararatne D, Okkenhaug K, Williams RL, Condliffe A, Nejentsev S (2013) Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342:866–871. https://doi.org/10.1126/science.1243292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ruiz-García R, Vargas-Hernández A, Chinn IK, Angelo LS, Cao TN, Coban-Akdemir Z, Jhangiani SN, Meng Q, Forbes LR, Muzny DM, Allende LM, Ehlayel MS, Gibbs RA, Lupski JR, Uzel G, Orange JS, Mace EM (2018) Mutations in PI3K110δ cause impaired natural killer cell function partially rescued by rapamycin treatment. J Allergy Clin Immunol 142:605–617.e7. https://doi.org/10.1016/j.jaci.2017.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Benoit L, Wang X, Pabst HF, Dutz J, Tan R (2000) Defective NK cell activation in X-linked lymphoproliferative disease. J Immunol 165:3549–3553

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno M. Neves or Catarina R. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neves, B.M., Almeida, C.R. (2020). Signaling Pathways Governing Activation of Innate Immune Cells. In: Silva, J.V., Freitas, M.J., Fardilha, M. (eds) Tissue-Specific Cell Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-44436-5_4

Download citation

Publish with us

Policies and ethics