Skip to main content

Hormone Signaling Pathways in the Postnatal Mammary Gland

  • Chapter
  • First Online:
Tissue-Specific Cell Signaling

Abstract

The mammary gland is an organ that in female mammals develops after birth and specializes to produce milk to feed the offspring. The mammary gland undergoes continued remodeling in response to hormonal cues that direct its development and function throughout sexual development and reproductive age. This gland can undergo numerous cycles of proliferation, differentiation and apoptosis after each pregnancy. This is accomplished by mammary stem cells (MaSCs) capable of sustaining continuous remodeling of the mammary tissue. The biological processes that regulate mammary morphogenesis and remodeling are regulated by steroid and peptide hormones which tightly control gene expression and epigenetic changes. This chapter aims to give a general overview of the main hormones and signaling pathways that control the female mammary gland differentiation leading to a fully functional milk producing gland. For this purpose, a summary of findings from commonly used cell and animal models, as well as humans was selected to explain the effects exerted by the main hormones implicated in mammary gland biology.

F. L. Monteiro and I. Direito—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

ATG:

Autophagy protein

AR:

Androgen receptor

AREG:

Amphiregulin

BCL-2:

Bcl2-associated agonist of cell death

BEC1:

Beclin-1

BiP:

EnR stressor sensor-binding immunoglobulin protein

BM:

Basement membrane

BMI1:

Polycomb complex protein BMI-1

BMP4:

Bone morphogenetic protein 4

BTC:

Betacellulin

CCND1:

Cyclin D1

CDK6:

Cyclin-dependent kinase-6

CHOP:

DNA damage-inducible transcript 3 protein

CSN1S1:

Alpha-S1-casein

CXCR4:

C-X-C chemokine receptor type 4

CXCL12:

Stromal cell-derived factor 1

DNMTs:

DNA methyltransferases

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EZH2:

Histone-lysine N-methyltransferase EZH2

EIF5:

Eukaryotic translation initiation factor 5A-1

ELF5:

ETS-related transcription factor Elf-5

EMT:

Epithelial mesenchymal transition

EPGN:

Epigen

EPR:

Epiregulin

ER:

Estrogen receptor

Esr:

Estrogen receptor gene

FGFs:

Fibroblast growth factors

FGFRs:

FGF receptors

FOXP3:

Forkhead box protein P3

FTO:

Alpha-ketoglutarate-dependent dioxygenase FTO

GH:

Growth hormone

GR:

Glucocorticoid receptor

GREs:

Glucocorticoid responsive elements

HB-EGF:

Heparin binding-EGF

HDMTs:

Demethylases

HMTs:

Histone methyltransferases

HOXA1:

Homeobox protein Hox-A1

HOXB3:

Homeobox protein Hox-B3

HOXD10:

Homeobox protein Hox-D10

hPTMs:

Histone post-translational modifications

hPTMs:

Histones post-translational modifications

IRE1α:

Inositol-requiring enzyme 1α

IGF:

Insulin -like growth factor

IGF1:

Insulin-like growth factor I

IGFBPs:

High affinity binding proteins

IGFRs:

Insulin growth factor-receptors

IGFs:

Insulin growth factors

IR:

Insulin receptor

INS:

Insulin

JNK:

Mitogen-activated protein kinase 8

JARID1B:

Lysine-specific demethylase 5B

KDMs:

K demethylases

LEF1:

Lymphoid enhancer-binding factor 1

MAP1LC3B:

Microtubule-associated proteins 1A/1B light chain 3B

MAPK:

Mitogen-activated protein kinases

MaSCs:

Mammary stem cells

ncRNAS:

Non-coding RNAs

NFE2L2:

Nuclear factor erythroid 2-related factor 2

NRG:

Neuroregulins

NOTCH3:

Neurogenic locus notch homolog protein 3

PARP:

Poly [ADP-ribose] polymerase

PPARγ:

Peroxisome proliferator-activated receptor gamma

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PI3K:

Phosphatidylinositol 3-kinase

PKC:

Protein kinase C

PR:

Progesterone receptor

PRCs:

POLYCOMB REPRESSIVE COMPLEXES

PRL:

Prolactin

PRLHR:

Prolactin-releasing peptide receptor

PRLRs:

PRL receptors

PTHrP:

Parathyroid hormone related peptide

PYGO2:

Pygopus homolog 2

RANKL:

Tumor necrosis factor ligand superfamily member 11

REnR:

Rough endoplasmic reticulum

RSPO1:

R-spondin-1

RTKs:

Receptor tyrosine kinases

SLC2A1:

Facilitated glucose transporter member 1

STAT5A:

Signal transducer and activator of transcription 5A

SREBP1:

Sterol regulatory element-binding protein 1

TAL1:

T-cell acute lymphocytic leukemia protein 1

TCF3/4:

Transcription factor E2-alpha/4

TDGF1:

Teratocarcinoma-derived growth factor 1

TEBs:

Terminal end buds

TGFα:

Transforming growth factor alpha

TGFB1:

Transforming growth factor beta-1

TJs:

Tight junctions

TP53:

Cellular tumor antigen p53

SOX4:

Transcription factor SOX-4

SOX17:

Transcription factor SOX17

UPR:

Unfolded Protein Response

VIM:

Vimentin

XBP-1:

X-box-binding protein 1

ZEB1/2:

Zinc finger E-box-binding homeobox 1/2

References

  1. Macias H, Hinck L (2012) Mammary gland development. Wiley Interdiscip Rev Dev Biol 1:533–557

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hovey RC, Trott JF, Vonderhaar BK (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 7:17–38

    PubMed  Google Scholar 

  3. Roskelley CD, Bissell MJ (2002) The dominance of the microenvironment in breast and ovarian cancer. Semin Cancer Biol 12:97–104. https://doi.org/10.1006/scbi.2001.0417

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kelly PA, Bachelot A, Kedzia C et al (2002) The role of prolactin and growth hormone in mammary gland development. Mol Cell Endocrinol 197:127–131

    CAS  PubMed  Google Scholar 

  5. Brisken C, Kaur S, Chavarria TE et al (1999) Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 210:96–106. https://doi.org/10.1006/dbio.1999.9271

    Article  CAS  PubMed  Google Scholar 

  6. Wagner KU, Young WS 3rd, Liu X et al (1997) Oxytocin and milk removal are required for post-partum mammary-gland development. Genes Funct 1:233–244

    CAS  PubMed  Google Scholar 

  7. Young WS 3rd, Shepard E, Amico J et al (1996) Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. J Neuroendocr 8:847–853

    CAS  Google Scholar 

  8. Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6:1–11. https://doi.org/10.1186/bcr634

    Article  CAS  PubMed  Google Scholar 

  9. Landskroner-Eiger S, Park J, Israel D et al (2010) Morphogenesis of the developing mammary gland: stage-dependent impact of adipocytes. Dev Biol 344:968–978. https://doi.org/10.1016/j.ydbio.2010.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science (80–) 296:1046–1049. https://doi.org/10.1126/SCIENCE.1067431

  11. Paine IS, Lewis MT (2017) The terminal end bud: the little engine that could. J. Mammary Gland Biol Neoplasia 22:93–108

    PubMed  PubMed Central  Google Scholar 

  12. Brisken C, O’Malley B (2010) Hormone action in the mammary gland. Cold Spring Harb Perspect Biol 2:a003178

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hennighausen L, Robinson GW (2001) Signaling pathways in mammary gland development. Dev Cell 1:467–475

    CAS  PubMed  Google Scholar 

  14. Tepera SB, McCrea PD, Rosen JM (2003) A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci 116:1137–1149

    CAS  PubMed  Google Scholar 

  15. Gallego MI, Binart N, Robinson GW et al (2001) Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev Biol 229:163–175

    CAS  PubMed  Google Scholar 

  16. Dasari P, Sharkey DJ, Noordin E et al (2014) Hormonal regulation of the cytokine microenvironment in the mammary gland. J Reprod Immunol 106:58–66. https://doi.org/10.1016/j.jri.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  17. Yu QC, Verheyen EM, Zeng YA (2016) Mammary development and breast cancer: a Wnt perspective. Cancers (Basel) 8. https://doi.org/10.3390/cancers8070065

  18. Watson CJ, Khaled WT, Krnacik S et al (2008) Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135:995–1003. https://doi.org/10.1242/dev.005439

    Article  CAS  PubMed  Google Scholar 

  19. Wiesen JF, Young P, Werb Z, Cunha GR (1999) Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 126:335–344

    CAS  PubMed  Google Scholar 

  20. Beleut M, Rajaram RD, Caikovski M et al (2010) Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc Natl Acad Sci USA 107:2989–2994. https://doi.org/10.1073/pnas.0915148107

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ball SM (1998) The development of the terminal end bud in the prepubertal-pubertal mouse mammary gland. Anat Rec 250:459–464. https://doi.org/10.1002/(SICI)1097-0185(199804)250:4%3c459:AID-AR9%3e3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  22. Hinck L, Silberstein GB (2005) Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 7:245–251. https://doi.org/10.1186/bcr1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134. https://doi.org/10.1007/s10911-010-9178-9

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shillingford JM, Hennighausen L (2001) Experimental mouse genetics–answering fundamental questions about mammary gland biology. Trends Endocrinol Metab 12:402–408

    CAS  PubMed  Google Scholar 

  25. Oakes SR, Naylor MJ, Asselin-Labat ML et al (2008) The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 22:581–586

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hovey RC, Harris J, Hadsell DL et al (2003) Local insulin-like growth factor-II mediates prolactin-induced mammary gland development. Mol Endocrinol 17:460–471. https://doi.org/10.1210/me.2002-0214

    Article  CAS  PubMed  Google Scholar 

  27. Loladze AV, Stull MA, Rowzee AM et al (2006) Epithelial-specific and stage-specific functions of insulin-like growth factor-I during postnatal mammary development. Endocrinology 147:5412–5423. https://doi.org/10.1210/en.2006-0427

    Article  CAS  PubMed  Google Scholar 

  28. Williams C, Helguero L, Edvardsson K et al (2009) Gene expression in murine mammary epithelial stem cell-like cells shows similarities to human breast cancer gene expression. Breast Cancer Res 11. https://doi.org/10.1186/bcr2256

  29. Dória ML, Ribeiro AS, Wang J et al (2014) Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J 28:4247–4264. https://doi.org/10.1096/fj.14-249672

    Article  CAS  PubMed  Google Scholar 

  30. Stein T, Salomonis N, Gusterson BA (2007) Mammary gland involution as a multi-step process. J Mammary Gland Biol Neoplasia 12:25–35. https://doi.org/10.1007/s10911-007-9035-7

    Article  PubMed  Google Scholar 

  31. Jindal S, Gao D, Bell P et al (2014) Postpartum breast involution reveals regression of secretory lobules mediated by tissue-remodeling. Breast Cancer Res 16:R31. https://doi.org/10.1186/bcr3633

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jena MK, Jaswal S, Kumar S, Mohanty AK (2019) Molecular mechanism of mammary gland involution: an update. Dev Biol 445:145–155. https://doi.org/10.1016/J.YDBIO.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  33. Watson CJ (2006) Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res 8:203. https://doi.org/10.1186/bcr1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arendt LM, Kuperwasser C (2015) Form and function: how estrogen and progesterone regulate the mammary epithelial hierarchy. J Mammary Gland Biol Neoplasia 20:9–25. https://doi.org/10.1007/s10911-015-9337-0

    Article  PubMed  PubMed Central  Google Scholar 

  35. Garbe JC, Pepin F, Pelissier FA et al (2012) Accumulation of multipotent progenitors with a basal differentiation bias during aging of human mammary epithelia. Cancer Res 72:3687–3701. https://doi.org/10.1158/0008-5472.CAN-12-0157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DeOme KB, Faulkin Jr LJ, Bern, HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–520

    Google Scholar 

  37. Visvader JE, Lindeman GJ (2006) Mammary stem cells and mammopoiesis. Cancer Res 66:9798–9801

    CAS  PubMed  Google Scholar 

  38. Holliday H, Baker LA, Junankar SR et al (2018) Epigenomics of mammary gland development. Breast Cancer Res 20:100

    PubMed  PubMed Central  Google Scholar 

  39. Michalak EM, Nacerddine K, Pietersen A et al (2013) Polycomb group gene Ezh2 regulates mammary gland morphogenesis and maintains the luminal progenitor pool. Stem Cells 31:1910–1920. https://doi.org/10.1002/stem.1437

    Article  CAS  PubMed  Google Scholar 

  40. Visvader JE, Stingl J (2014) Mammary stem cells and the differentiation hierarchy: current status and perspectives. Genes Dev 28:1143–1158. https://doi.org/10.1101/gad.242511.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Keymeulen A, Fioramonti M, Centonze A et al (2017) Lineage-restricted mammary stem cells sustain the development, homeostasis, and regeneration of the estrogen receptor positive lineage. Cell Rep 20:1525–1532. https://doi.org/10.1016/J.CELREP.2017.07.066

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shehata M, Teschendorff A, Sharp G et al (2012) Phenotypic and functional characterisation of the luminal cell hierarchy of the mammary gland. Breast Cancer Res 14:R134. https://doi.org/10.1186/bcr3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pellacani D, Bilenky M, Kannan N et al (2016) Analysis of normal human mammary epigenomes reveals cell-specific active enhancer states and associated transcription factor networks. Cell Rep 17:2060–2074. https://doi.org/10.1016/j.celrep.2016.10.058

    Article  CAS  PubMed  Google Scholar 

  44. Tordonato C, Di Fiore PP, Nicassio F (2015) The role of non-coding RNAs in the regulation of stem cells and progenitors in the normal mammary gland and in breast tumors. Front Genet 6:72. https://doi.org/10.3389/fgene.2015.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Breindel JL, Skibinski A, Sedic M et al (2017) Epigenetic reprogramming of lineage-committed human mammary epithelial cells requires DNMT3A and loss of DOT1L. Stem Cell Rep 9:943–955. https://doi.org/10.1016/j.stemcr.2017.06.019

    Article  CAS  Google Scholar 

  46. Avgustinova A, Benitah SA (2016) Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol 17:643–658. https://doi.org/10.1038/nrm.2016.76

    Article  CAS  PubMed  Google Scholar 

  47. Huang TH-M, Esteller M (2010) Chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb Perspect Biol 2:a004515. https://doi.org/10.1101/cshperspect.a004515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pathania R, Ramachandran S, Elangovan S et al (2015) DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun 6:6910. https://doi.org/10.1038/ncomms7910

    Article  CAS  PubMed  Google Scholar 

  49. Monteiro FLFL, Baptista T, Amado F et al (2014) Expression and functionality of histone H2A variants in cancer. Oncotarget 5:3428–3443. https://doi.org/10.18632/oncotarget.2007

  50. Maruyama R, Choudhury S, Kowalczyk A et al (2011) Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium. PLoS Genet 7:e1001369. https://doi.org/10.1371/journal.pgen.1001369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rijnkels M, Kabotyanski E, Montazer-Torbati MB et al (2010) The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia 15:85–100

    PubMed  PubMed Central  Google Scholar 

  52. Dos Santos CO, Dolzhenko E, Hodges E et al (2015) An epigenetic memory of pregnancy in the mouse mammary gland. Cell Rep 11:1102–1109. https://doi.org/10.1016/j.celrep.2015.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45. https://doi.org/10.1038/47412

    Article  CAS  PubMed  Google Scholar 

  54. Dravis C, Chung CY, Lytle NK et al (2018) Epigenetic and transcriptomic profiling of mammary gland development and tumor models disclose regulators of cell state plasticity. Cancer Cell 34:466–482.e6. https://doi.org/10.1016/j.ccell.2018.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pietersen AM, Evers B, Prasad AA et al (2008) Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol 18:1094–1099. https://doi.org/10.1016/j.cub.2008.06.070

    Article  CAS  PubMed  Google Scholar 

  56. Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071. https://doi.org/10.1158/0008-5472.CAN-06-0054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gu B, Sun P, Yuan Y et al (2009) Pygo2 expands mammary progenitor cells by facilitating histone H3 K4 methylation. J Cell Biol 185:811–826. https://doi.org/10.1083/JCB.200810133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gu B, Watanabe K, Sun P et al (2013) Chromatin effector Pygo2 mediates Wnt-notch cross-talk to suppress luminal/alveolar potential of mammary stem and basal cells. Cell Stem Cell 13:48. https://doi.org/10.1016/J.STEM.2013.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pal B, Bouras T, Shi W et al (2013) Global changes in the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell Rep 3:411–426. https://doi.org/10.1016/J.CELREP.2012.12.020

    Article  CAS  PubMed  Google Scholar 

  60. Scibetta AG, Santangelo S, Coleman J et al (2007) Functional analysis of the transcription repressor PLU-1/JARID1B. Mol Cell Biol 27:7220–7235. https://doi.org/10.1128/MCB.00274-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Burchell S, Catchpole S, Spencer-Dene B et al (2011) PLU-1/JARID1B/KDM5B is required for embryonic survival and contributes to cell proliferation in the mammary gland and in ER+ breast cancer cells. Int J Oncol 38:1267–1277. https://doi.org/10.3892/ijo.2011.956

    Article  CAS  PubMed  Google Scholar 

  62. Zou MR, Cao J, Liu Z et al (2014) Histone demethylase jumonji AT-rich interactive domain 1B (JARID1B) controls mammary gland development by regulating key developmental and lineage specification genes. J Biol Chem 289:17620–17633. https://doi.org/10.1074/jbc.M114.570853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh R, Bassett E, Chakravarti A, Parthun MR (2018) Replication-dependent histone isoforms: a new source of complexity in chromatin structure and function. Nucleic Acids Res 46:8665–8678. https://doi.org/10.1093/nar/gky768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frommer M, McDonald LE, Millar DS et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275. https://doi.org/10.1038/nrm2861

    Article  CAS  PubMed  Google Scholar 

  66. Monteiro FL, Vitorino R, Wang J et al (2017) The histone H2A isoform Hist2h2ac is a novel regulator of proliferation and epithelial–mesenchymal transition in mammary epithelial and in breast cancer cells. Cancer Lett 396:42–52. https://doi.org/10.1016/j.canlet.2017.03.007

    Article  CAS  PubMed  Google Scholar 

  67. Reichenstein M, Rauner G, Kfir S et al (2016) Luminal STAT5 mediates H2AX promoter activity in distinct population of basal mammary epithelial cells. Oncotarget 7:41781–41797. https://doi.org/10.18632/oncotarget.9718

  68. Eilon T, Barash I (2011) Forced activation of Stat5 subjects mammary epithelial cells to DNA damage and preferential induction of the cellular response mechanism during proliferation. J Cell Physiol 226:616–626. https://doi.org/10.1002/jcp.22381

    Article  CAS  PubMed  Google Scholar 

  69. Aydoğdu E, Katchy A, Tsouko E et al (2012) MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer. Carcinogenesis 33:1502–1511. https://doi.org/10.1093/carcin/bgs161

    Article  CAS  PubMed  Google Scholar 

  70. Chao C-H, Chang C-C, Wu M-J et al (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 124:3093–3106. https://doi.org/10.1172/JCI73351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Song SJ, Poliseno L, Song MS et al (2013) MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell 154:311–324. https://doi.org/10.1016/j.cell.2013.06.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bian Y, Lei Y, Wang C et al (2015) Epigenetic regulation of miR-29s affects the lactation activity of dairy cow mammary epithelial cells. J Cell Physiol 230:2152–2163. https://doi.org/10.1002/jcp.24944

    Article  CAS  PubMed  Google Scholar 

  73. Melnik BC, Schmitz G (2017) MicroRNAs: milk’s epigenetic regulators. Best Pract Res Clin Endocrinol Metab 31:427–442

    CAS  PubMed  Google Scholar 

  74. Klinge CM (2018) Steroid hormone receptors and signal transduction processes. Springer, Cham, pp 187–232

    Google Scholar 

  75. Koehler KF, Helguero LA, Haldosén L-A et al (2005) Reflections on the discovery and significance of estrogen receptor β. Endocr Rev 26:465–478. https://doi.org/10.1210/er.2004-0027

    Article  CAS  PubMed  Google Scholar 

  76. Kuiper GGJM, Lemmen JG, Carlsson B et al (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252–4263. https://doi.org/10.1210/endo.139.10.6216

    Article  CAS  PubMed  Google Scholar 

  77. Harrington WR, Sheng S, Barnett DH et al (2003) Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression. Mol Cell Endocrinol 206:13–22

    CAS  PubMed  Google Scholar 

  78. Yaşar P, Ayaz G, User SD et al (2017) Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol 16:4–20. https://doi.org/10.1002/rmb2.12006

    Article  CAS  PubMed  Google Scholar 

  79. Charn TH, Liu ET-B, Chang EC et al (2010) Genome-wide dynamics of chromatin binding of estrogen receptors alpha and beta: mutual restriction and competitive site selection. Mol Endocrinol 24:47–59. https://doi.org/10.1210/me.2009-0252

    Article  CAS  PubMed  Google Scholar 

  80. Williams C, Edvardsson K, Lewandowski SA et al (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27:1019–1032. https://doi.org/10.1038/sj.onc.1210712

    Article  CAS  PubMed  Google Scholar 

  81. Anderson E, Clarke RB, Howell A (1998) Estrogen responsiveness and control of normal human breast proliferation. J Mammary Gland Biol Neoplasia 3:23–35

    CAS  PubMed  Google Scholar 

  82. Hovey RC, McFadden TB, Akers RM (1999) Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J Mammary Gland Biol Neoplasia 4:53–68

    CAS  PubMed  Google Scholar 

  83. Keeling JW, Ozer E, King G, Walker F (2000) Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J Pathol 191:449–451. https://doi.org/10.1002/1096-9896(2000)9999:9999%3c:AID-PATH661%3e3.0.CO;2-%23

    Article  CAS  PubMed  Google Scholar 

  84. Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA 103:2196–2201. https://doi.org/10.1073/pnas.0510974103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tanos T, Rojo L, Echeverria P, Brisken C (2012) ER and PR signaling nodes during mammary gland development. Breast Cancer Res 14:210. https://doi.org/10.1186/bcr3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zeps N, Bentel JM, Papadimitriou JM et al (1998) Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation 62:221–226. https://doi.org/10.1046/j.1432-0436.1998.6250221.x

    Article  CAS  PubMed  Google Scholar 

  87. Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991

    CAS  PubMed  Google Scholar 

  88. Schroeder JA, Lee DC (1998) Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ 9:451–464

    CAS  PubMed  Google Scholar 

  89. Ciarloni L, Mallepell S, Brisken C (2007) Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci USA 104:5455–5460. https://doi.org/10.1073/pnas.0611647104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Feng Y, Manka D, Wagner KU, Khan SA (2007) Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci USA 104:14718–14723. https://doi.org/10.1073/pnas.0706933104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Asselin-Labat ML, Vaillant F, Sheridan JM et al (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802. https://doi.org/10.1038/nature09027

    Article  CAS  PubMed  Google Scholar 

  92. Cleland WH, Mendelson CR, Simpson ER (1985) Effects of aging and obesity on aromatase activity of human adipose cells. J Clin Endocrinol Metab 60:174–177. https://doi.org/10.1210/jcem-60-1-174

    Article  CAS  PubMed  Google Scholar 

  93. Shoker BS, Jarvis C, Sibson DR et al (1999) Oestrogen receptor expression in the normal and pre-cancerous breast. J Pathol 188:237–244. https://doi.org/10.1002/(SICI)1096-9896(199907)188:3%3c237:AID-PATH343%3e3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  94. Speirs V, Adams IP, Walton DS, Atkin SL (2000) Identification of wild-type and Exon 5 deletion variants of estrogen receptor β in normal human mammary gland 1. J Clin Endocrinol Metab 85:1601–1605. https://doi.org/10.1210/jcem.85.4.6493

    Article  CAS  PubMed  Google Scholar 

  95. Speirs V, Skliris GP, Burdall SE, Carder PJ (2002) Distinct expression patterns of ERα and ERβ in normal human mammary gland. J Clin Pathol 55:371–374

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Andersson S, Sundberg M, Pristovsek N et al (2017) Insufficient antibody validation challenges oestrogen receptor beta research. Nat Commun 8:15840. https://doi.org/10.1038/ncomms15840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mehta RG, Hawthorne M, Mehta RR et al (2014) Differential roles of ERα and ERβ in normal and neoplastic development in the mouse mammary gland. PLoS One 9:e113175. https://doi.org/10.1371/journal.pone.0113175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lubahn DB, Moyer JS, Golding TS et al (1993) Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 90:11162–11166

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Forster C, Makela S, Warri A et al (2002) Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Proc Natl Acad Sci USA 99:15578–15583

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Helguero LA, Lindberg K, Gardmo C et al (2008) Different roles of estrogen receptors α and β in the regulation of E-Cadherin protein levels in a mouse mammary epithelial cell line. Cancer Res 68:8695–8704. https://doi.org/10.1158/0008-5472.CAN-08-0788

    Article  CAS  PubMed  Google Scholar 

  101. Helguero LA, Faulds MH, Gustafsson J-Å, Haldosén L-A (2005) Estrogen receptors alfa (ERα) and beta (ERβ) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24:6605–6616. https://doi.org/10.1038/sj.onc.1208807

    Article  CAS  PubMed  Google Scholar 

  102. Lazennec G, Bresson D, Lucas A et al (2001) ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 142:4120–4130. https://doi.org/10.1210/endo.142.9.8395

    Article  CAS  PubMed  Google Scholar 

  103. Cotrim CZ, Fabris V, Doria ML et al (2012) Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells. Oncogene 2:261

    Google Scholar 

  104. Thomas C, Gustafsson J-Å (2011) The different roles of ER subtypes in cancer biology and therapy. Nat Rev Cancer 11:597–608. https://doi.org/10.1038/nrc3093

    Article  CAS  PubMed  Google Scholar 

  105. Liu MM, Albanese C, Anderson CM et al (2002) Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem 277:24353–24360. https://doi.org/10.1074/jbc.M201829200

    Article  CAS  PubMed  Google Scholar 

  106. Lindberg K, Helguero LA, Omoto Y et al (2011) Estrogen receptor β represses Akt signaling in breast cancer cells via downregulation of HER2/HER3 and upregulation of PTEN: implications for tamoxifen sensitivity. Breast Cancer Res 13:R43. https://doi.org/10.1186/bcr2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leitman DC, Paruthiyil S, Vivar OI et al (2010) Regulation of specific target genes and biological responses by estrogen receptor subtype agonists. Curr Opin Pharmacol 10:629–636. https://doi.org/10.1016/j.coph.2010.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grober OM, Mutarelli M, Giurato G et al (2011) Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genom 12:36. https://doi.org/10.1186/1471-2164-12-36

    Article  CAS  Google Scholar 

  109. Russo J, Ao X, Grill C, Russo IH (1999) Pattern of distribution of cells positive for estrogen receptor alpha and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res Treat 53:217–227

    CAS  PubMed  Google Scholar 

  110. Lamb CA, Fabris VT, Jacobsen BM et al (2018) Biological and clinical impact of imbalanced progesterone receptor isoform ratios in breast cancer. Endocr Relat Cancer 25:R605–R624. https://doi.org/10.1530/ERC-18-0179

    Article  CAS  Google Scholar 

  111. Richer JK, Jacobsen BM, Manning NG et al (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277:5209–5218. https://doi.org/10.1074/jbc.M110090200

    Article  CAS  PubMed  Google Scholar 

  112. Haslam SZ, Shyamala G (1981) Relative distribution of estrogen and progesterone receptors among the epithelial, adipose, and connective tissue components of the normal mammary gland. Endocrinology 108:825–830. https://doi.org/10.1210/endo-108-3-825

    Article  CAS  PubMed  Google Scholar 

  113. Haslam SZ (1989) The ontogeny of mouse mammary gland responsiveness to ovarian steroid hormones. Endocrinology 125:2766–2772. https://doi.org/10.1210/endo-125-5-2766

    Article  CAS  PubMed  Google Scholar 

  114. Giulianelli S, Vaque JP, Soldati R et al (2012) Estrogen receptor alpha mediates progestin-induced mammary tumor growth by interacting with progesterone receptors at the cyclin D1/MYC promoters. Cancer Res 72:2416–2427. https://doi.org/10.1158/0008-5472.CAN-11-3290

    Article  CAS  PubMed  Google Scholar 

  115. Daniel AR, Gaviglio AL, Knutson TP et al (2015) Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes. Oncogene 34:506–515. https://doi.org/10.1038/onc.2013.579

    Article  CAS  PubMed  Google Scholar 

  116. Mohammed H, Russell IA, Stark R et al (2015) Progesterone receptor modulates ERα action in breast cancer. Nature 523:313–317. https://doi.org/10.1038/nature14583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Singhal H, Greene ME, Tarulli G et al (2016) Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer. Sci Adv 2:e1501924. https://doi.org/10.1126/sciadv.1501924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brisken C, Park S, Vass T et al (1998) A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci USA 95:5076–5081

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM (2003) Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci USA 100:9744–9749. https://doi.org/10.1073/pnas.1732707100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mulac-Jericevic B, Mullinax RA, DeMayo FJ et al (2000) Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science (80–) 289:1751–1754

    Google Scholar 

  121. Cai C, Yu QC, Jiang W et al (2014) R-spondin1 is a novel hormone mediator for mammary stem cell self-renewal. Genes Dev 28:2205–2218. https://doi.org/10.1101/gad.245142.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brisken C (2002) Hormonal control of alveolar development and its implications for breast carcinogenesis. J Mammary Gland Biol Neoplasia 7:39–48

    PubMed  Google Scholar 

  123. Lee HJ, Gallego-Ortega D, Ledger A et al (2013) Progesterone drives mammary secretory differentiation via RankL-mediated induction of Elf5 in luminal progenitor cells. Development 140:1397–1401. https://doi.org/10.1242/DEV.088948

    Article  CAS  PubMed  Google Scholar 

  124. Joshi PA, Waterhouse PD, Kannan N et al (2015) RANK signaling amplifies WNT-responsive mammary progenitors through R-SPONDIN1. Stem Cell Rep 5:31–44. https://doi.org/10.1016/J.STEMCR.2015.05.012

    Article  CAS  Google Scholar 

  125. Fernandez-Valdivia R, Mukherjee A, Ying Y et al (2009) The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol 328:127–139. https://doi.org/10.1016/j.ydbio.2009.01.019

    Article  CAS  PubMed  Google Scholar 

  126. Brisken C, Heineman A, Chavarria T et al (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14:650–654. https://doi.org/10.1101/GAD.14.6.650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shiah YJ, Tharmapalan P, Casey AE et al (2015) A progesterone-CXCR4 axis controls mammary progenitor cell fate in the adult gland. Stem Cell Rep 4:313–322. https://doi.org/10.1016/j.stemcr.2015.01.011

    Article  CAS  Google Scholar 

  128. Lombardi S, Honeth G, Ginestier C et al (2014) Growth hormone is secreted by normal breast epithelium upon progesterone stimulation and increases proliferation of stem/progenitor cells. Stem Cell Reports 2:780–793. https://doi.org/10.1016/j.stemcr.2014.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Labrie F (2006) Dehydroepiandrosterone, androgens and the mammary gland. Gynecol Endocrinol 22:118–130. https://doi.org/10.1080/09513590600624440

    Article  CAS  PubMed  Google Scholar 

  130. Walters KA, Simanainen U, Gibson DA (2016) Androgen action in female reproductive physiology. Curr Opin Endocrinol Diab Obes 23:291–296. https://doi.org/10.1097/MED.0000000000000246

    Article  CAS  Google Scholar 

  131. Alberti KGMM, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet Med 15:539–553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7%3c539:AID-DIA668%3e3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  132. Dimitrakakis C, Bondy C (2009) Androgens and the breast. Breast Cancer Res 11:212. https://doi.org/10.1186/bcr2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dimitrakakis C, Zhou J, Wang J et al (2003) A physiologic role for testosterone in limiting estrogenic stimulation of the breast. Menopause 10:292–298. https://doi.org/10.1097/01.GME.0000055522.67459.89

    Article  PubMed  Google Scholar 

  134. Panet-Raymond V, Gottlieb B, Beitel LK et al (2000) Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol Cell Endocrinol 167:139–150

    CAS  PubMed  Google Scholar 

  135. Couture P, Thériault C, Simard J, Labrie F (1993) Androgen receptor-mediated stimulation of 17 beta-hydroxysteroid dehydrogenase activity by dihydrotestosterone and medroxyprogesterone acetate in ZR-75-1 human breast cancer cells. Endocrinology 132:179–185. https://doi.org/10.1210/endo.132.1.8380373

    Article  CAS  PubMed  Google Scholar 

  136. Pelletier G (2000) Localization of androgen and estrogen receptors in rat and primate tissues. Histol Histopathol 15:1261–1270. https://doi.org/10.14670/HH-15.1261

  137. Wilson CM, McPhaul MJ (1996) A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endocrinol 120:51–57

    CAS  PubMed  Google Scholar 

  138. Carlsen SM, Jacobsen G, Vanky E (2010) Mid-pregnancy androgen levels are negatively associated with breastfeeding. Acta Obs Gynecol Scand 89:87–94. https://doi.org/10.3109/00016340903318006

    Article  CAS  Google Scholar 

  139. Hoover KL, Barbalinardo LH, Platia MP (2002) Delayed lactogenesis II secondary to gestational ovarian theca lutein cysts in two normal singleton pregnancies. J Hum Lact 18:264–268. https://doi.org/10.1177/089033440201800309

    Article  PubMed  Google Scholar 

  140. Baratta M, Grolli S, Poletti A et al (2000) Role of androgens in proliferation and differentiation of mouse mammary epithelial cell line HC11. J Endocrinol 167:53–60

    CAS  PubMed  Google Scholar 

  141. Chambô-Filho A, Camargos AF, Pereira FE (2005) Morphological changes induced by testosterone in the mammary glands of female Wistar rats. Braz J Med Biol Res 38:553–558. https://doi.org/10.1590/S0100-879X2005000400008

  142. Casey TM, Plaut K (2007) The role of glucocorticoids in secretory activation and milk secretion, a historical perspective. J Mammary Gland Biol Neoplasia 12:293–304. https://doi.org/10.1007/s10911-007-9055-3

    Article  PubMed  Google Scholar 

  143. Li S, Rosen JM (1994) Glucocorticoid regulation of rat whey acidic protein gene expression involves hormone-induced alterations of chromatin structure in the distal promoter region. Mol Endocrinol 8:1328–1335. https://doi.org/10.1210/mend.8.10.7854350

    Article  CAS  PubMed  Google Scholar 

  144. Lechner J, Welte T, Tomasi JK et al (1997) Promoter-dependent synergy between glucocorticoid receptor and Stat5 in the activation of beta-casein gene transcription. J Biol Chem 272:20954–20960

    CAS  PubMed  Google Scholar 

  145. Harigaya T, Sakai S, Kohmoto K, Shoda Y (1982) Influence of glucocorticoids on mammary prolactin receptors in pregnant mice after ovariectomy. J Endocrinol 94:149–155

    CAS  PubMed  Google Scholar 

  146. Mizoguchi Y, Yamaguchi H, Aoki F et al (1997) Corticosterone is required for the prolactin receptor gene expression in the late pregnant mouse mammary gland. Mol Cell Endocrinol 132:177–183

    CAS  PubMed  Google Scholar 

  147. Alexandrová M (1986) Glucocorticoid receptor of rat mammary gland during pregnancy and lactation. Endocrinol Exp 20:293–300

    PubMed  Google Scholar 

  148. Reichardt HM, Horsch K, Gröne HJ et al (2001) Mammary gland development and lactation are controlled by different glucocorticoid receptor activities. Eur J Endocrinol 145:519–527

    CAS  PubMed  Google Scholar 

  149. Mills ES, Topper YJ (1970) Some ultrastructural effects of insulin, hydrocortisone, and prolactin on mammary gland explants. J Cell Biol 44:310–328

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Topper YJ (1970) Multiple hormone interactions in the development of mammary gland in vitro. Recent Prog Horm Res 26:287–308

    CAS  PubMed  Google Scholar 

  151. Kobayashi K, Tsugami Y, Matsunaga K et al (2016) Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with β-casein expression in mammary epithelial cells. Biochim Biophys Acta 1863:2006–2016. https://doi.org/10.1016/j.bbamcr.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  152. Kobayashi K, Kumura H (2011) Distinct behavior of claudin-3 and -4 around lactation period in mammary alveolus in mice. Histochem Cell Biol 136:587–594. https://doi.org/10.1007/s00418-011-0863-6

    Article  CAS  PubMed  Google Scholar 

  153. Fischer A, Stuckas H, Gluth M et al (2007) Impaired tight junction sealing and precocious involution in mammary glands of PKN1 transgenic mice. J Cell Sci 120:2272–2283. https://doi.org/10.1242/jcs.03467

    Article  CAS  PubMed  Google Scholar 

  154. Nguyen DA, Parlow AF, Neville MC (2001) Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J Endocrinol 170:347–356

    CAS  PubMed  Google Scholar 

  155. Johnson RM, Meites J (1958) Effects of cortisone acetate on milk production and mammary involution in parturient rats. Endocrinology 63:290–294. https://doi.org/10.1210/endo-63-3-290

    Article  CAS  PubMed  Google Scholar 

  156. Feng Z, Marti A, Jehn B et al (1995) Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol 131:1095–1103

    CAS  PubMed  Google Scholar 

  157. Nelson WO (1936) Endocrine control of the mammary gland. Physiol Rev 16:488–526. https://doi.org/10.1152/physrev.1936.16.3.488

    Article  Google Scholar 

  158. Folley SJ, Young FG (1938) The effect of anterior pituitary extracts on established lactation in the cow. Proc R Soc London Ser B, Biol Sci 126:45–76. https://doi.org/10.2307/82156

    Article  CAS  Google Scholar 

  159. Cohick WS (2016) Physiology and endocrinology symposium: effects of insulin on mammary gland differentiation during pregnancy and lactation. J Anim Sci 94:1812–1820

    CAS  PubMed  Google Scholar 

  160. Balmain JH, French TH, Folley SJ (1950) Stimulation by insulin of in vitro fat synthesis by lactating mammary gland slices. Nature 165:807–808

    CAS  PubMed  Google Scholar 

  161. Robinson AM, Williamson DH (1977) Comparison of glucose metabolism in the lactating mammary gland of the rat in vivo and in vitro. Effects of starvation, prolactin or insulin deficiency. Biochem J 164:153–159. https://doi.org/10.1042/BJ1640153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Baxter MA, Coore HG (1978) The mode of regulation of pyruvate dehydrogenase of lactating rat mammary gland. Effects of starvation and insulin. Biochem J 174:553–561

    CAS  PubMed  PubMed Central  Google Scholar 

  163. McNeillie EM, Zammit VA (1982) Regulation of acetyl-CoA carboxylase in rat mammary gland. Effects of starvation and of insulin and prolactin deficiency on the fraction of the enzyme in the active form in vivo. Biochem J 204:273–280

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Jones RG, Ilic V, Williamson DH (1984) Physiological significance of altered insulin metabolism in the conscious rat during lactation. Biochem J 220:455–460

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Walters E, McLean P (1968) Effect of alloxan-diabetes and treatment with anti-insulin serum on pathways of glucose metabolism in lactating rat mammary gland. Biochem J 109:407–417

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Neville MC, Webb P, Ramanathan P et al (2013) The insulin receptor plays an important role in secretory differentiation in the mammary gland. AJP Endocrinol Metab 305:E1103–E1114. https://doi.org/10.1152/ajpendo.00337.2013

    Article  CAS  Google Scholar 

  167. Hadsell DL, Olea W, Lawrence N et al (2007) Decreased lactation capacity and altered milk composition in insulin receptor substrate null mice is associated with decreased maternal body mass and reduced insulin-dependent phosphorylation of mammary Akt. J Endocrinol 194:327–336. https://doi.org/10.1677/JOE-07-0160

    Article  CAS  PubMed  Google Scholar 

  168. Berlato C, Doppler W (2009) Selective response to insulin versus insulin-like growth factor-I and -II and up-regulation of insulin receptor splice variant B in the differentiated mouse mammary epithelium. Endocrinology 150:2924–2933. https://doi.org/10.1210/en.2008-0668

    Article  CAS  PubMed  Google Scholar 

  169. Rowzee AM, Ludwig DL, Wood TL (2009) Insulin-like growth factor type 1 receptor and insulin receptor isoform expression and signaling in mammary epithelial cells. Endocrinology 150:3611–3619. https://doi.org/10.1210/en.2008-1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Marshman E, Streuli CH (2002) Insulin-like growth factors and insulin-like growth factor binding proteins in mammary gland function. Breast Cancer Res 4:231–239

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Cohick WS, Clemmons DR (1993) The insulin-like growth factors. Annu Rev Physiol 55:131–153. https://doi.org/10.1146/annurev.ph.55.030193.001023

    Article  CAS  PubMed  Google Scholar 

  172. Ha WT, Jeong HY, Lee SY, Song H (2016) Effects of the insulin-like growth factor pathway on the regulation of mammary gland development. Dev Reprod 20:179–185. https://doi.org/10.12717/DR.2016.20.3.179

  173. Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140:5075–5081. https://doi.org/10.1210/endo.140.11.7095

    Article  CAS  PubMed  Google Scholar 

  174. Richards RG, Klotz DM, Walker MP, Diaugustine RP (2004) Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology 145:3106–3110. https://doi.org/10.1210/en.2003-1112

    Article  CAS  PubMed  Google Scholar 

  175. Cannata D, Lann D, Wu Y et al (2010) Elevated circulating IGF-I promotes mammary gland development and proliferation. Endocrinology 151:5751–5761. https://doi.org/10.1210/en.2010-0792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Plaut K, Ikeda M, Vonderhaar BK (1993) Role of growth hormone and insulin-like growth factor-I in mammary development. Endocrinology 133:1843–1848. https://doi.org/10.1210/endo.133.4.8404627

    Article  CAS  PubMed  Google Scholar 

  177. Sureshbabu A, Tonner E, Flint DJ (2011) Insulin-like growth factor binding proteins and mammary gland development. Int J Dev Biol 55:781–789. https://doi.org/10.1387/ijdb.113364as

    Article  PubMed  Google Scholar 

  178. Flint DJ, Boutinaud M, Tonner E et al (2005) Insulin-like growth factor binding proteins initiate cell death and extracellular matrix remodeling in the mammary gland. Domest Anim Endocrinol 29:274–282. https://doi.org/10.1016/J.DOMANIEND.2005.02.021

    Article  CAS  PubMed  Google Scholar 

  179. Tonner E, Barber MC, Travers MT et al (1997) Hormonal control of insulin-like growth factor-binding protein-5 production in the involuting mammary gland of the rat. Endocrinology 138:5101–5107. https://doi.org/10.1210/endo.138.12.5619

    Article  CAS  PubMed  Google Scholar 

  180. Allan GJ, Beattie J, Flint DJ (2004) The role of IGFBP-5 in mammary gland development and involution. Domest Anim Endocrinol 27:257–266. https://doi.org/10.1016/J.DOMANIEND.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  181. Ning Y, Hoang B, Schuller AGP et al (2007) Delayed mammary gland involution in mice with mutation of the insulin-like growth factor binding protein 5 gene. Endocrinology 148:2138–2147. https://doi.org/10.1210/en.2006-0041

    Article  CAS  PubMed  Google Scholar 

  182. Normanno N, Bianco C, De Luca A et al (2003) Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer 10:1–21

    CAS  PubMed  Google Scholar 

  183. Kenney NJ, Huang R-P, Johnson GR et al (1995) Detection and location of amphiregulin and Cripto-1 expression in the developing postnatal mouse mammary gland. Mol Reprod Dev 41:277–286. https://doi.org/10.1002/mrd.1080410302

    Article  CAS  PubMed  Google Scholar 

  184. Hynes NE, Watson CJ (2010) Mammary gland growth factors: roles in normal development and in cancer. Cold Spring Harb Perspect Biol 2:a003186. https://doi.org/10.1101/cshperspect.a003186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Hardy KM, Booth BW, Hendrix MJC et al (2010) ErbB/EGF signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 15:191–199. https://doi.org/10.1007/s10911-010-9172-2

    Article  PubMed  PubMed Central  Google Scholar 

  186. Wieduwilt MJ, Moasser MM (2008) The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65:1566–1584. https://doi.org/10.1007/s00018-008-7440-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sebastian J, Richards RG, Walker MP et al (1998) Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ 9:777–785

    CAS  PubMed  Google Scholar 

  188. Luetteke NC, Qiu TH, Fenton SE et al (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126:2739–2750

    CAS  PubMed  Google Scholar 

  189. Coleman S, Silberstein GB, Daniel CW (1988) Ductal morphogenesis in the mouse mammary gland: Evidence supporting a role for epidermal growth factor. Dev Biol 127:304–315. https://doi.org/10.1016/0012-1606(88)90317-X

    Article  CAS  PubMed  Google Scholar 

  190. Kenney NJ, Bowman A, Korach KS et al (2003) Effect of exogenous epidermal-like growth factors on mammary gland development and differentiation in the estrogen receptor-alpha knockout (ERKO) mouse. Breast Cancer Res Treat 79:161–173

    CAS  PubMed  Google Scholar 

  191. Aupperlee MD, Leipprandt JR, Bennett JM et al (2013) Amphiregulin mediates progesterone-induced mammary ductal development during puberty. Breast Cancer Res 15:R44. https://doi.org/10.1186/bcr3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Snedeker SM, Brown CF, DiAugustine RP (1991) Expression and functional properties of transforming growth factor alpha and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc Natl Acad Sci USA 88:276–280

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Imagawa W, Pedchenko VK, Helber J, Zhang H (2002) Hormone/growth factor interactions mediating epithelial/stromal communication in mammary gland development and carcinogenesis. J Steroid Biochem Mol Biol 80:213–230. https://doi.org/10.1016/S0960-0760(01)00188-1

    Article  CAS  PubMed  Google Scholar 

  194. Jackson-Fisher AJ, Bellinger G, Ramabhadran R et al (2004) ErbB2 is required for ductal morphogenesis of the mammary gland. Proc Natl Acad Sci USA 101:17138–17143. https://doi.org/10.1073/pnas.0407057101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Williams MM, Vaught DB, Joly MM et al (2017) ErbB3 drives mammary epithelial survival and differentiation during pregnancy and lactation. Breast Cancer Res 19:105. https://doi.org/10.1186/s13058-017-0893-7

    Article  PubMed  PubMed Central  Google Scholar 

  196. Klauzinska M, McCurdy D, Rangel MC et al (2015) Cripto-1 ablation disrupts alveolar development in the mouse mammary gland through a progesterone receptor-mediated pathway. Am J Pathol 185:2907–2922. https://doi.org/10.1016/j.ajpath.2015.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Schwertfeger KL (2009) Fibroblast growth factors in development and cancer: insights from the mammary and prostate glands. Curr Drug Targets 10:632–644. https://doi.org/10.2174/138945009788680419

    Article  CAS  PubMed  Google Scholar 

  198. Itoh N (2016) FGF10: a multifunctional mesenchymal–epithelial signaling growth factor in development, health, and disease. Cytokine Growth Factor Rev 28:63–69. https://doi.org/10.1016/J.CYTOGFR.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  199. Coleman-Krnacik S, Rosen JM (1994) Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol Endocrinol 8:218–229. https://doi.org/10.1210/mend.8.2.8170478

    Article  CAS  PubMed  Google Scholar 

  200. Zhang X, Martinez D, Koledova Z et al (2014) FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development 141:3352–3362. https://doi.org/10.1242/dev.106732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Jeong W, Bae H, Lim W et al (2017) The functional effects and mechanisms by which fibroblast growth factor 2 (FGF2) controls bovine mammary epithelial cells: Implications for the development and functionality of the bovine mammary gland. J Anim Sci 95:5365–5377. https://doi.org/10.2527/jas2017.1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Astigiano S, Damonte P, Barbieri O (2003) Inhibition of ductal morphogenesis in the mammary gland of WAP-Fgf4 transgenic mice. Anat Embryol (Berl) 206:471–478. https://doi.org/10.1007/s00429-003-0317-6

    Article  CAS  PubMed  Google Scholar 

  203. Fata JE, Mori H, Ewald AJ et al (2007) The MAPK(ERK-1,2) pathway integrates distinct and antagonistic signals from TGFα and FGF7 in morphogenesis of mouse mammary epithelium. Dev Biol 306:193–207. https://doi.org/10.1016/j.ydbio.2007.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mailleux AA, Spencer-Dene B, Dillon C et al (2002) Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 129:53–60

    CAS  PubMed  Google Scholar 

  205. Parsa S, Ramasamy SK, De Langhe S et al (2008) Terminal end bud maintenance in mammary gland is dependent upon FGFR2b signaling. Dev Biol 317:121–131. https://doi.org/10.1016/J.YDBIO.2008.02.014

    Article  CAS  PubMed  Google Scholar 

  206. Cui Y, Li Q (2013) Expression and functions of fibroblast growth factor 10 in the mouse mammary gland. Int J Mol Sci 14:4094–4105. https://doi.org/10.3390/ijms14024094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Jackson D, Bresnick J, Rosewell I et al (1997) Fibroblast growth factor receptor signalling has a role in lobuloalveolar development of the mammary gland. J Cell Sci 110:1261–1268

    CAS  PubMed  Google Scholar 

  208. Horseman ND (1999) Prolactin and mammary gland development. J. Mammary Gland Biol. Neoplasia 4:79–88

    CAS  PubMed  Google Scholar 

  209. Hennighausen L, Robinson GW, Wagner KU, Liu X (1997) Prolactin signaling in mammary gland development. J Biol Chem 272:7567–7569

    CAS  PubMed  Google Scholar 

  210. Gouilleux F, Wakao H, Mundt M, Groner B (1994) Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 13:4361–4369

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Horseman ND, Zhao W, Montecino-Rodriguez E et al (1997) Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 16:6926–6935. https://doi.org/10.1093/emboj/16.23.6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ormandy CJ, Camus A, Barra J et al (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11:167–178. https://doi.org/10.1101/gad.11.2.167

    Article  CAS  PubMed  Google Scholar 

  213. Vomachka AJ, Pratt SL, Lockefeer JA, Horseman ND (2000) Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 19:1077–1084. https://doi.org/10.1038/sj.onc.1203348

    Article  CAS  PubMed  Google Scholar 

  214. Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ (2008) Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 13:13–28. https://doi.org/10.1007/s10911-008-9069-5

    Article  PubMed  Google Scholar 

  215. Liu X, Robinson GW, Wagner KU et al (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11:179–186

    CAS  PubMed  Google Scholar 

  216. Wagner K-U, Krempler A, Triplett AA et al (2004) Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol 24:5510–5520. https://doi.org/10.1128/MCB.24.12.5510-5520.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Wakao H, Gouilleux F, Groner B (1994) Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 13:2182–2191

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Schmitt-Ney M, Doppler W, Ball RK, Groner B (1991) Beta-casein gene promoter activity is regulated by the hormone-mediated relief of transcriptional repression and a mammary-gland-specific nuclear factor. Mol Cell Biol 11:3745–3755

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Pittius CW, Sankaran L, Topper YJ, Hennighausen L (1988) Comparison of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol Endocrinol 2:1027–1032. https://doi.org/10.1210/mend-2-11-1027

    Article  CAS  PubMed  Google Scholar 

  220. Streuli CH, Edwards GM, Delcommenne M et al (1995) Stat5 as a target for regulation by extracellular matrix. J Biol Chem 270:21639–21644. https://doi.org/10.1074/JBC.270.37.21639

    Article  CAS  PubMed  Google Scholar 

  221. Faraldo MM, Deugnier M-A, Tlouzeau S et al (2002) Perturbation of beta1-integrin function in involuting mammary gland results in premature dedifferentiation of secretory epithelial cells. Mol Biol Cell 13:3521–3531. https://doi.org/10.1091/mbc.e02-02-0086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lindeman GJ, Wittlin S, Lada H et al (2001) SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev 15:1631–1636. https://doi.org/10.1101/gad.880801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lee HJ, Ormandy CJ (2012) Interplay between progesterone and prolactin in mammary development and implications for breast cancer. Mol Cell Endocrinol 357:101–107

    CAS  PubMed  Google Scholar 

  224. Moses H, Barcellos-Hoff MH (2011) TGF-β Biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol 3:1–14. https://doi.org/10.1101/cshperspect.a003277

    Article  CAS  Google Scholar 

  225. Zhang YE (2009) Non-Smad pathways in TGF-β signaling. Cell Res 19:128–139. https://doi.org/10.1038/cr.2008.328

    Article  CAS  PubMed  Google Scholar 

  226. Joseph H, Gorska AE, Sohn P et al (1999) Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell 10:1221–1234. https://doi.org/10.1091/mbc.10.4.1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Robinson SD, Silberstein GB, Roberts AB et al (1991) Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development 113:867–878

    CAS  PubMed  Google Scholar 

  228. Silberstein GB, Daniel CW (1987) Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science 237:291–293

    CAS  PubMed  Google Scholar 

  229. Ewan KB, Shyamala G, Ravani SA et al (2002) Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 160:2081–2093

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Roarty K, Serra R (2007) Wnt5a is required for proper mammary gland development and TGF-β-mediated inhibition of ductal growth. Development 134:3929–3939. https://doi.org/10.1242/dev.008250

    Article  CAS  PubMed  Google Scholar 

  231. Gorska AE, Joseph H, Derynck R et al (1998) Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ 9:229–238

    CAS  PubMed  Google Scholar 

  232. Soriano JV, Pepper MS, Orci L, Montesano R (1998) Roles of hepatocyte growth factor/scatter factor and transforming growth factor-β1 in mammary gland ductal morphogenesis. J Mammary Gland Biol Neoplasia 3:133–150. https://doi.org/10.1023/A:1018790705727

    Article  CAS  PubMed  Google Scholar 

  233. Ewan KBR, Oketch-Rabah HA, Ravani SA et al (2005) Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. Am J Pathol 167:409–417

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Ingman WV, Robertson SA (2008) Mammary gland development in transforming growth factor beta1 null mutant mice: systemic and epithelial effects. Biol Reprod 79:711–717. https://doi.org/10.1095/biolreprod.107.067272

    Article  CAS  PubMed  Google Scholar 

  235. Robinson SD, Roberts AB, Daniel CW (1993) TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy. J Cell Biol 120:245–251

    CAS  PubMed  Google Scholar 

  236. Nguyen AV, Pollard JW (2000) Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development 127:3107–3118

    CAS  PubMed  Google Scholar 

  237. Strange R, Li F, Saurer S et al (1992) Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115:49–58

    CAS  PubMed  Google Scholar 

  238. Hasegawa D, Calvo V, Avivar-Valderas A et al (2015) Epithelial Xbp1 is required for cellular proliferation and differentiation during mammary gland development. https://doi.org/10.1128/MCB.00136-15

  239. Tsuchiya M, Koizumi Y, Hayashi S et al (2017) The role of unfolded protein response in differentiation of mammary epithelial cells. Biochem Biophys Res Commun 484:903–908. https://doi.org/10.1016/J.BBRC.2017.02.042

    Article  CAS  PubMed  Google Scholar 

  240. Sequeira SJ, Ranganathan AC, Adam AP et al (2007) Inhibition of proliferation by PERK regulates mammary acinar morphogenesis and tumor formation. PLoS One 2:e615. https://doi.org/10.1371/journal.pone.0000615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bagheri-Yarmand R, Vadlamudi RK, Kumar R (2003) Activating transcription factor 4 overexpression inhibits proliferation and differentiation of mammary epithelium resulting in impaired lactation and accelerated involution. J Biol Chem 278:17421–17429. https://doi.org/10.1074/jbc.M300761200

    Article  CAS  PubMed  Google Scholar 

  242. Bobrovnikova-Marjon E, Hatzivassiliou G, Grigoriadou C et al (2008) PERK-dependent regulation of lipogenesis during mouse mammary gland development and adipocyte differentiation. Proc Natl Acad Sci USA 105:16314–16319. https://doi.org/10.1073/pnas.0808517105

    Article  PubMed  PubMed Central  Google Scholar 

  243. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12. https://doi.org/10.1002/path.2697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17:829–838. https://doi.org/10.1038/ncb3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Direito I, Fardilha M, Helguero LA (2018) Contribution of the unfolded protein response to breast and prostate tissue homeostasis and its significance to cancer endocrine response. Carcinogenesis. https://doi.org/10.1093/carcin/bgy182

    Article  Google Scholar 

  246. Clarke R, Cook KL, Hu R et al (2012) Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer Res 72:1321–1331. https://doi.org/10.1158/0008-5472.CAN-11-3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Wang W-A, Groenendyk J, Michalak M (2014) Endoplasmic reticulum stress associated responses in cancer. Biochim Biophys Acta—Mol Cell Res 1843:2143–2149. https://doi.org/10.1016/J.BBAMCR.2014.01.012

    Article  CAS  Google Scholar 

  248. Vandewynckel Y-P, Laukens D, Geerts A et al (2013) The paradox of the unfolded protein response in cancer. Anticancer Res 33:4683–4694

    CAS  PubMed  Google Scholar 

  249. Mills KR, Reginato M, Debnath J et al (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA 101:3438–3443. https://doi.org/10.1073/pnas.0400443101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Avivar-Valderas A, Salas E, Bobrovnikova-Marjon E et al (2011) PERK integrates autophagy and oxidative stress responses to promote survival during extracellular matrix detachment. Mol Cell Biol 31:3616–3629. https://doi.org/10.1128/MCB.05164-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sobolewska A, Motyl T, Gajewska M (2011) Role and regulation of autophagy in the development of acinar structures formed by bovine BME-UV1 mammary epithelial cells. Eur J Cell Biol 90:854–864. https://doi.org/10.1016/J.EJCB.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  252. Zielniok K, Motyl T, Gajewska M (2014) Functional interactions between 17 β-estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int 2014:382653. https://doi.org/10.1155/2014/382653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Vittoria Barone M, Crozat A, Tabaee A et al (1994) CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev 8:453–464. https://doi.org/10.1101/gad.8.4.453

    Article  Google Scholar 

  254. Wärri A, Cook KL, Hu R et al (2018) Autophagy and unfolded protein response (UPR) regulate mammary gland involution by restraining apoptosis-driven irreversible changes. Cell Death Discov 4:40. https://doi.org/10.1038/s41420-018-0105-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Monks J, Henson PM (2009) Differentiation of the mammary epithelial cell during involution: implications for breast cancer. J Mammary Gland Biol Neoplasia 14:159–170. https://doi.org/10.1007/s10911-009-9121-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to authors whose work was not cited due to space limitations. We are thankful to Institute for Biomedicine—iBiMED (UID/BIM/04501/2013, POCI-01-0145-FEDER-007628 and UID/BIM/04501/2019) for supporting this project. iBiMED is supported by the Portuguese Foundation for Science and Technology (FCT), Compete2020 and FEDER fund. FLM and ID thank FCT for their fellowship (SFRH/BD/123821/2016 and SFRH/BD/117818/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa A. Helguero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monteiro, F.L., Direito, I., Helguero, L.A. (2020). Hormone Signaling Pathways in the Postnatal Mammary Gland. In: Silva, J.V., Freitas, M.J., Fardilha, M. (eds) Tissue-Specific Cell Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-44436-5_10

Download citation

Publish with us

Policies and ethics