Skip to main content

Beyond Brain Signaling

  • Chapter
  • First Online:
Tissue-Specific Cell Signaling

Abstract

The brain is considered the most complex organ of the human body, being composed by a complex network of neurons and glial cells. Neurons communicate with each other through synapses, while glial cells essentially support both the structure and function of neurons, but also participate in the transmission of signals within the central nervous system. Neuronal signaling comprises electrical signaling that culminates with synaptic transmission, with consequent release of a chemical neurotransmitter at the presynaptic terminal. Neurotransmitter binding to a specific receptor originates postsynaptic signal transduction events that are specific of the type of receptor activated; these are summarized along this chapter. Glial cells are very active and, depending on the cell type, its specific functional demands and partners, their activity is regulated by distinct signaling pathways, also detailed throughout this chapter. In essence, this chapter summarizes the signaling pathways crucial for both neurons and glial cells, as well as the cross talk between these two building blocks of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine

AC:

Adenylate cyclase

AMPA:

Amino-methylisoxazole propionic acid

ARC:

Activity-regulated cytoskeleton-associated protein

ARG1:

Arginase 1

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

Ca2+:

Calcium ion

Cl:

Chloride ion

cAMP:

Cyclic adenosine monophosphate

CD:

Cluster of differentiation

CX3CL1:

Fractalkine

CX3CR1:

CX3C chemokine receptor 1

CNS:

Central nervous system

CREB:

cAMP response element binding protein

DAG:

Diacylglycerol

DAMP:

Damage-associated molecular pattern molecule

ER:

Endoplasmic reticulum

ECF:

Extracellular fluid

ECM:

Extracellular matrix

EGR1:

Early growth response protein 1

EPSP:

Excitatory postsynaptic potential

Erk1/2:

Extracellular-related kinase 1/2

FIZZ1:

Flammatory zone 1

GABA:

γ-aminobutyric acid

GDP:

Guanosine diphosphate

GIRK:

G protein-gated inwardly rectifying K+ channel

GFAP:

Glial-fibrillary acidic protein

GLUT1:

Glucose transporter type 1

GPCR:

G protein-coupled receptor

GTP:

Guanosine triphosphate

HCAR1:

Hydrocarboxylic acid receptor 1

IFN:

Interferon

IL:

Interleukin

IP3:

Inositol triphosphate

IPSP:

Inhibitory postsynaptic potential

K+:

Potassium ion

LDH1:

Lactate dehydrogenase 1

Mg2+:

Magnesium ion

MCT:

Monocarboxylate transporter

MHC:

Major histocompatibility complex

MS:

Multiple sclerosis

Na+:

Sodium ion

NAD+:

Oxidized nicotinamide adenine dinucleotide

NADH:

Reduced nicotinamide adenine dinucleotide

NMDA:

N-methyl-D-aspartate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NS:

Nervous system

OPC:

Oligodendrocyte precursor cell

PAMP:

Pathogen-associated molecular pattern

PIP2:

Phosphatidylinositol diphosphate

PKA:

cAMP-dependent protein kinase

PKC:

Protein kinase C

PLC:

Phospholipase C

PNS:

Peripheral nervous system

ROS:

Reactive oxygen species

TCA:

Tricarboxylic acid

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TRP:

Transient receptor potential

TrkB:

Tropomyosin-related receptor kinase B

TREM2:

Triggering receptor expressed on myeloid cells 2

YM1/2:

Chitinase 3-like 3

References

  1. Purves D, Augustine GJ, Fitzpatrick D et al (2004) Neuroscience, 3rd edn. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology

    Google Scholar 

  2. Nolte J (2007) Elsevier’s integrated neuroscience, 1st edn. Mosby/Elsevier

    Google Scholar 

  3. Mtui E, Gruener G, Dockery P (2015) Fitzgerald’s clinical neuroanatomy and neuroscience, 7th edn. Elsevier

    Google Scholar 

  4. Squire LR, Bloom FE, Ghosh A et al (2014) Fundamental neuroscience, 3rd edn. Elsevier/Academic Press

    Google Scholar 

  5. Pekny M, Pekna M, Messing A et al (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345. https://doi.org/10.1007/s00401-015-1513-1

    Article  CAS  PubMed  Google Scholar 

  6. Durkee CA, Araque A (2019) Diversity and specificity of astrocyte–neuron communication. Neuroscience 396:73–78. https://doi.org/10.1016/J.NEUROSCIENCE.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  7. Perry VH (2016) Microglia. Microbiol Spectr 4. https://doi.org/10.1128/MICROBIOLSPEC.MCHD-0003-2015

  8. Wolf SA, Boddeke HWGM, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643. https://doi.org/10.1146/annurev-physiol-022516-034406

    Article  CAS  PubMed  Google Scholar 

  9. Osso LA, Chan JR (2017) Architecting the myelin landscape. Curr Opin Neurobiol 47:1–7. https://doi.org/10.1016/J.CONB.2017.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nestler EJ, Hyman SE, Malenka RC (2009) Molecular neuropharmacology: a foundation for clinical neuroscience, 2nd edn. McGraw-Hill Medical

    Google Scholar 

  11. Lovinger DM (2008) Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol. Alcohol Res Health 31:196–214

    PubMed  PubMed Central  Google Scholar 

  12. McConnell TH, Hull KL (2010) Communication: chemical and electrical signaling. In: Human form, human function: essentials of anatomy & physiology, North American edn. LWW, pp 112–137

    Google Scholar 

  13. Rehfeld A, Nylander M, Karnov K (2017) Nerve tissue. In: Compendium of histology—a theoretical and practical guide. Springer International Publishing, Cham, pp 247–266

    Google Scholar 

  14. Von Bohlen Und Halbach O, Dermietzel R (2006) Neurotransmitters and neuromodulators: handbook of receptors and biological effects, 2nd edn. Wiley-Blackwell

    Google Scholar 

  15. Cabrera-Vera TM, Vanhauwe J, Thomas TO et al (2003) Insights into G protein structure, function, and regulation. Endocr Rev 24:765–781. https://doi.org/10.1210/er.2000-0026

    Article  CAS  PubMed  Google Scholar 

  16. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc B Biol Sci 369:20130595. https://doi.org/10.1098/rstb.2013.0595

    Article  CAS  Google Scholar 

  17. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19:235–249. https://doi.org/10.1038/nrn.2018.19

    Article  CAS  PubMed  Google Scholar 

  18. Magistretti PJ (2009) Role of glutamate in neuron-glia metabolic coupling. Am J Clin Nutr 90:875S–880S. https://doi.org/10.3945/ajcn.2009.27462CC

    Article  CAS  PubMed  Google Scholar 

  19. Pellerin L (2008) Brain energetics (thought needs food). Curr Opin Clin Nutr Metab Care 11:701–705. https://doi.org/10.1097/MCO.0b013e328312c368

    Article  PubMed  Google Scholar 

  20. Voutsinos-Porche B, Bonvento G, Tanaka K et al (2003) Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37:275–286. https://doi.org/10.1016/S0896-6273(02)01170-4

  21. Morland C, Lauritzen KH, Puchades M et al (2015) The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain. J Neurosci Res 93:1045–1055. https://doi.org/10.1002/jnr.23593

    Article  CAS  PubMed  Google Scholar 

  22. Vardjan N, Zorec R (2015) Excitable astrocytes: (Ca2+) and cAMP-regulated exocytosis. Neurochem Res 40:2414–2424. https://doi.org/10.1007/s11064-015-1545-x

    Article  CAS  PubMed  Google Scholar 

  23. Guerra-Gomes S, Sousa N, Pinto L, Oliveira JF (2018) Functional roles of astrocyte calcium elevations: from synapses to behavior. Front Cell Neurosci 11:427. https://doi.org/10.3389/fncel.2017.00427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shigetomi E, Tong X, Kwan KY et al (2012) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80. https://doi.org/10.1038/nn.3000

    Article  CAS  Google Scholar 

  25. Volterra A, Liaudet N, Savtchouk I (2014) Astrocyte Ca2+ signalling: an unexpected complexity. Nat Rev Neurosci 15:327–335. https://doi.org/10.1038/nrn3725

    Article  CAS  PubMed  Google Scholar 

  26. Shigetomi E, Patel S, Khakh BS (2016) Probing the complexities of astrocyte calcium signaling. Trends Cell Biol 26:300–312. https://doi.org/10.1016/j.tcb.2016.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perea G, Araque A (2005) Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 25:2192–2203. https://doi.org/10.1523/JNEUROSCI.3965-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panatier A, Vallée J, Haber M et al (2011) Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–798. https://doi.org/10.1016/j.cell.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  29. Takata N, Mishima T, Hisatsune C et al (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165. https://doi.org/10.1523/JNEUROSCI.5289-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bowser DN, Khakh BS (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J Neurosci 24:8606–8620. https://doi.org/10.1523/JNEUROSCI.2660-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang J, Jiang L, Goldman SA, Nedergaard M (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat Neurosci 1:683–692. https://doi.org/10.1038/3684

    Article  CAS  PubMed  Google Scholar 

  32. Meier SD, Kafitz KW, Rose CR (2008) Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. Glia 56:1127–1137. https://doi.org/10.1002/glia.20684

    Article  PubMed  Google Scholar 

  33. Mariotti L, Losi G, Sessolo M et al (2016) The inhibitory neurotransmitter GABA evokes long-lasting Ca2+ oscillations in cortical astrocytes. Glia 64:363–373. https://doi.org/10.1002/glia.22933

    Article  PubMed  Google Scholar 

  34. Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893. https://doi.org/10.1016/j.neuron.2008.01.029

    Article  CAS  PubMed  Google Scholar 

  35. Min R, Nevian T (2012) Astrocyte signaling controls spike timing–dependent depression at neocortical synapses. Nat Neurosci 15:746–753. https://doi.org/10.1038/nn.3075

    Article  CAS  PubMed  Google Scholar 

  36. Robin LM, Oliveira da Cruz JF, Langlais VC et al (2018) Astroglial CB1 receptors determine synaptic D-Serine availability to enable recognition memory. Neuron 98:935–944.e5. https://doi.org/10.1016/j.neuron.2018.04.034

    Article  CAS  PubMed  Google Scholar 

  37. Eriksson PS, Nilsson M, Wågberg M et al (1993) Kappa-opioid receptors on astrocytes stimulate L-type Ca2+ channels. Neuroscience 54:401–407

    Article  CAS  PubMed  Google Scholar 

  38. Stiene-Martin A, Zhou R, Hauser KF (1998) Regional, developmental, and cell cycle-dependent differences in mu, delta, and kappa-opioid receptor expression among cultured mouse astrocytes. Glia 22:249–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74:555–563

    Article  CAS  PubMed  Google Scholar 

  40. Schipke CG, Heuser I, Peters O (2011) Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 45:242–248. https://doi.org/10.1016/j.jpsychires.2010.06.005

    Article  PubMed  Google Scholar 

  41. Agulhon C, Boyt KM, Xie AX et al (2013) Modulation of the autonomic nervous system and behaviour by acute glial cell G q protein-coupled receptor activation in vivo. J Physiol 591:5599–5609. https://doi.org/10.1113/jphysiol.2013.261289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jennings A, Tyurikova O, Bard L et al (2017) Dopamine elevates and lowers astroglial Ca2+ through distinct pathways depending on local synaptic circuitry. Glia 65:447–459. https://doi.org/10.1002/glia.23103

    Article  PubMed  Google Scholar 

  43. Horvat A, Vardjan N (2019) Astroglial cAMP signalling in space and time. Neurosci Lett 689:5–10. https://doi.org/10.1016/j.neulet.2018.06.025

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Z, Ikegaya Y, Koyama R et al (2019) The astrocytic cAMP pathway in health and disease. Int J Mol Sci 20:779. https://doi.org/10.3390/ijms20030779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Horvat A, Zorec R, Vardjan N (2016) Adrenergic stimulation of single rat astrocytes results in distinct temporal changes in intracellular Ca2+ and cAMP-dependent PKA responses. Cell Calcium 59:156–163. https://doi.org/10.1016/J.CECA.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  46. Sharma K, Schmitt S, Bergner CG et al (2015) Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 18:1819–1831. https://doi.org/10.1038/nn.4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Choi HB, Gordon GRJ, Zhou N et al (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104. https://doi.org/10.1016/J.NEURON.2012.08.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vardjan N, Kreft M, Zorec R (2014) Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes. Glia 62:566–579. https://doi.org/10.1002/glia.22626

    Article  PubMed  Google Scholar 

  49. Vardjan N, Horvat A, Anderson JE et al (2016) Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma. Glia 64(6):1034–1049. https://doi.org/10.1002/glia.22981

  50. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. https://doi.org/10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  51. Kozlowski C, Weimer RM (2012) An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo. PLoS One 7:e31814. https://doi.org/10.1371/journal.pone.0031814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mosser C-A, Baptista S, Arnoux I, Audinat E (2017) Microglia in CNS development: shaping the brain for the future. Prog Neurobiol 149–150:1–20. https://doi.org/10.1016/j.pneurobio.2017.01.002

    Article  PubMed  Google Scholar 

  53. Smolders SM-T, Kessels S, Vangansewinkel T et al (2019) Microglia: brain cells on the move. Prog Neurobiol 178:101612. https://doi.org/10.1016/j.pneurobio.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  54. Arnoux I, Hoshiko M, Mandavy L et al (2013) Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory “Barrel” cortex. Glia 61:1582–1594. https://doi.org/10.1002/glia.22503

    Article  PubMed  Google Scholar 

  55. Prinz M, Erny D, Hagemeyer N (2017) Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 18:385–392. https://doi.org/10.1038/ni.3703

    Article  CAS  PubMed  Google Scholar 

  56. Hanisch U-K (2013) Functional diversity of microglia—how heterogeneous are they to begin with? Front Cell Neurosci 7:65. https://doi.org/10.3389/fncel.2013.00065

  57. Karperien A, Ahammer H, Jelinek HF (2013) Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci 7:3. https://doi.org/10.3389/fncel.2013.00003

    Article  PubMed  PubMed Central  Google Scholar 

  58. Olah M, Biber K, Vinet J, Boddeke HWGM (2011) Microglia phenotype diversity. CNS Neurol Disord: Drug Targets 10:108–118

    Article  CAS  PubMed  Google Scholar 

  59. Scheffold A, Holtman IR, Dieni S et al (2016) Telomere shortening leads to an acceleration of synucleinopathy and impaired microglia response in a genetic mouse model. Acta Neuropathol Commun 4:87. https://doi.org/10.1186/s40478-016-0364-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Streit WJ, Xue Q-S, Tischer J, Bechmann I (2014) Microglial pathology. Acta Neuropathol Commun 2:142. https://doi.org/10.1186/s40478-014-0142-6

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980. https://doi.org/10.1523/JNEUROSCI.4363-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tremblay M-È, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527. https://doi.org/10.1371/journal.pbio.1000527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schafer DP, Stevens B (2015) Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 7:a020545. https://doi.org/10.1101/cshperspect.a020545

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cameron B, Landreth GE (2010) Inflammation, microglia, and alzheimer’s disease. Neurobiol Dis 37:503–509. https://doi.org/10.1016/j.nbd.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  65. Katsumoto A, Lu H, Miranda AS, Ransohoff RM (2014) Ontogeny and functions of central nervous system macrophages. J Immunol 193:2615–2621. https://doi.org/10.4049/jimmunol.1400716

    Article  CAS  PubMed  Google Scholar 

  66. Cherry JD, Olschowka JA, O’Banion M (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. https://doi.org/10.1186/1742-2094-11-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davis MJ, Tsang TM, Qiu Y et al (2013) Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in cryptococcus neoformans infection. MBio 4:e00264-13. https://doi.org/10.1128/mBio.00264-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bianchi R, Adami C, Giambanco I, Donato R (2007) S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 81:108–118. https://doi.org/10.1189/jlb.0306198

    Article  CAS  PubMed  Google Scholar 

  69. Palm NW, Medzhitov R (2009) Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233. https://doi.org/10.1111/j.1600-065X.2008.00731.x

    Article  CAS  PubMed  Google Scholar 

  70. van Bruggen D, Agirre E, Castelo-Branco G (2017) Single-cell transcriptomic analysis of oligodendrocyte lineage cells. Curr Opin Neurobiol 47:168–175. https://doi.org/10.1016/j.conb.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  71. Barres BA, Raff MC (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:258–260. https://doi.org/10.1038/361258a0

    Article  CAS  PubMed  Google Scholar 

  72. Demerens C, Stankoff B, Logak M et al (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA 93:9887–9892. https://doi.org/10.1073/pnas.93.18.9887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fields RD (2010) Glutamate receptors: the cause or cure in perinatal white matter injury? Neuron Glia Biol 6:209–211. https://doi.org/10.1017/S1740925X11000147

  74. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science (80–) 333:1647–1651. https://doi.org/10.1126/science.1206998

  75. Bergles DE, Roberts JDB, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191. https://doi.org/10.1038/35012083

    Article  CAS  PubMed  Google Scholar 

  76. Jabs R, Pivneva T, Hüttmann K et al (2005) Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J Cell Sci 118:3791–3803. https://doi.org/10.1242/jcs.02515

    Article  CAS  PubMed  Google Scholar 

  77. Lin S-C, Bergles DE (2004) Synaptic signaling between neurons and glia. Glia 47:290–298. https://doi.org/10.1002/glia.20060

    Article  PubMed  Google Scholar 

  78. Káradóttir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166. https://doi.org/10.1038/nature04302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Káradóttir R, Hamilton NB, Bakiri Y, Attwell D (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11:450–456. https://doi.org/10.1038/nn2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10:311–320. https://doi.org/10.1038/nn1850

    Article  CAS  PubMed  Google Scholar 

  81. Ziskin JL, Nishiyama A, Rubio M et al (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10:321–330. https://doi.org/10.1038/nn1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. De Biase LM, Nishiyama A, Bergles DE (2010) Excitability and synaptic communication within the oligodendrocyte lineage. J Neurosci 30:3600–3611. https://doi.org/10.1523/JNEUROSCI.6000-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tomassy GS, Berger DR, Chen H-H et al (2014) Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science (80–) 344:319–324. https://doi.org/10.1126/science.1249766

  84. Frohlich D, Kuo WP, Fruhbeis C et al (2014) Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc B Biol Sci 369:20130510. https://doi.org/10.1098/rstb.2013.0510

    Article  CAS  Google Scholar 

  85. Yamazaki Y, Hozumi Y, Kaneko K et al (2010) Oligodendrocytes: facilitating axonal conduction by more than myelination. Neurosci 16:11–18. https://doi.org/10.1177/1073858409334425

    Article  Google Scholar 

  86. Micu I, Plemel JR, Lachance C et al (2016) The molecular physiology of the axo-myelinic synapse. Exp Neurol 276:41–50. https://doi.org/10.1016/j.expneurol.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  87. Fletcher J, Murray S, Xiao J (2018) Brain-derived neurotrophic factor in central nervous system myelination: a new mechanism to promote myelin plasticity and repair. Int J Mol Sci 19:4131. https://doi.org/10.3390/ijms19124131

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nave K-A, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Ann Rev Cell Dev Biol 30:503–533. https://doi.org/10.1146/annurev-cellbio-100913-013101

    Article  CAS  Google Scholar 

  89. Tripathi RB, Rivers LE, Young KM et al (2010) NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J Neurosci 30:16383–16390. https://doi.org/10.1523/JNEUROSCI.3411-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zawadzka M, Rivers LE, Fancy SPJ et al (2010) CNS-resident glial progenitor/stem cells produce schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590. https://doi.org/10.1016/j.stem.2010.04.002

    Article  CAS  PubMed  Google Scholar 

  91. Yeung MSY, Djelloul M, Steiner E et al (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566:538–542. https://doi.org/10.1038/s41586-018-0842-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Falcão AM, van Bruggen D, Marques S et al (2018) Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24:1837–1844. https://doi.org/10.1038/s41591-018-0236-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu Z, Cheng H, Jiang Y et al (2015) Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery. Acta Pharmacol Sin 36:895–907. https://doi.org/10.1038/aps.2015.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABAA receptors. J Biol Chem 287:40224–40231. https://doi.org/10.1074/jbc.R112.386664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322. https://doi.org/10.1146/annurev.pharmtox.011008.145533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brown DA (2010) Muscarinic acetylcholine receptors (mAChRs) in the nervous system: some functions and mechanisms. J Mol Neurosci 41:340–346. https://doi.org/10.1007/s12031-010-9377-2

    Article  CAS  PubMed  Google Scholar 

  97. Klein MO, Battagello DS, Cardoso AR et al (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39:31–59. https://doi.org/10.1007/s10571-018-0632-3

    Article  PubMed  Google Scholar 

  98. Bockaert J, Claeysen S, Bécamel C et al (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326:553–572. https://doi.org/10.1007/s00441-006-0286-1

    Article  CAS  PubMed  Google Scholar 

  99. Chalifoux JR, Carter AG (2011) GABAB receptor modulation of synaptic function. Curr Opin Neurobiol 21:339–344. https://doi.org/10.1016/j.conb.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guzman SJ, Gerevich Z (2016) P2Y receptors in synaptic transmission and plasticity: therapeutic potential in cognitive dysfunction. Neural Plast 2016:1–12. https://doi.org/10.1155/2016/1207393

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Rebelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, C.D., Martins, F., Marques, F., Sousa, J.C., Rebelo, S. (2020). Beyond Brain Signaling. In: Silva, J.V., Freitas, M.J., Fardilha, M. (eds) Tissue-Specific Cell Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-44436-5_1

Download citation

Publish with us

Policies and ethics