Skip to main content
Book cover

Soil Health pp 313–335Cite as

Role of Soil Organisms in Maintaining Soil Health, Ecosystem Functioning, and Sustaining Agricultural Production

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 59))

Abstract

Soil is the fundamental natural resource on which all living and nonliving things are evolved and sustained for carrying out vital life processes. Sustainable agriculture directly relies on soil health which is defined as the capacity of the soil to ascertain environmental quality, sustain biological productivity, and maintain health of all living beings. The biotic and abiotic components of an ecosystem interact with each other for proper functioning of all processes. Soil organisms consist of different living forms dwelling in the soil which spend at least one part of their life cycle in soil. These include soil megafauna, macrofauna, mesofauna, microfauna, and microflora. The life within the soil is hidden and so often suffers from being out of sight and out of mind, but their role in maintaining soil health and ecosystem productivity is indispensable. This chapter is an attempt to highlight the contribution of soil organisms in sustaining soil health, fertility, and agricultural productivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesemoye A, Torbert H, Kloepper J (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Alami Y, Achouak W, Marol C, Heulin T (2000) Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol 66:3393–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Anan’ina LN, Yastrebova OV, Demakov VA, Plotnikova EG (2011) Naphthalene degrading bacteria of the genus Rhodococcus from the Verkhnekamsk salt mining region of Russia. Antonie van Leeuwen 100:309–316

    Article  Google Scholar 

  • Arulazhagan P, Vasudevan N (2011) Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp VA1. Mar Pollut Bull 62:388–394

    Article  CAS  PubMed  Google Scholar 

  • Aust WM, Lea R (1991) Soil temperature and organic matter in a disturbed forested wetland. Soil Sci Soc Am J 55:1741–1746

    Article  Google Scholar 

  • Ayuke FO, Brussard L, Vanlauwe B, Lelei DK, Kibunja C, Pulleman MM (2011) Soil fertility management: impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl Soil Ecol 48(1):53–62

    Article  Google Scholar 

  • Bagyaraj DJ, Ashwin R (2017) Soil biodiversity: role in sustainable horticulture. Biodiversity Hortic Crops 5:1–18

    Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC, Boca Raton, FL, pp 331–345

    Google Scholar 

  • Bedano JC, Domínguez A (2016) A large-scale agricultural management and soil meso- and macrofauna conservation in the argentine pampas. Sustainability 8:653

    Article  Google Scholar 

  • Berthet P (1967) The metabolic activity of Oribatid mites (Acarina) in different forest floors. In: Petrusewicz K (ed) Secondary productivity of terrestrial ecosystems (principles and methods), vol II. Państwowe Wydawnictwo Naukowe, Warsaw, Poland, pp 709–725

    Google Scholar 

  • Bhadauria T, Saxena KG (2010) Role of earthworms in soil fertility maintenance through the production of biogenic structures. Appl Environ Soil Sci 2010:816073

    Article  Google Scholar 

  • Bhatt P, Tiwari S, Gangola S, Khati P, Kumar G, Sharma A (2017) Removal of xenobiotics from environment using microbial metabolism. Scientific India 5:33–34

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Bocock KL (1963) The digestion and assimilation of food by Glomeris. In: Doeksen J, van der Drift J (eds) Soil organisms. North-Holland Publishing Company, Amsterdam, The Netherlands, pp 85–91

    Google Scholar 

  • Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. J Soil Sci Plant Nutr 8:9–18

    Google Scholar 

  • Brady NC, Weil RR (2015) The nature and properties of soil, 15th edn. Pearson, Upper Saddle River, NJ

    Google Scholar 

  • Bremner JM, Steele CG (1978) Role of microorganisms in the atmospheric sulfur cycle. Adv Microbiol Ecol 2:155–201

    Article  CAS  Google Scholar 

  • Burns RG (2010) How do microbial extracellular enzymes locate and degrade natural and synthetic polymers in soil. In: Xu J, Huang PM (eds) Molecular environmental soil science at the interfaces in the Earth’s critical zone. Springer, Berlin, Heidelberg

    Google Scholar 

  • Caesar-TonThat AJ (2002) Soil binding properties of mucilage produced by a basidiomycete fungus in a model system. Mycol Res 106:930–937

    Article  Google Scholar 

  • Cardoso EJBN, Vasconcellos RLF, Bini D, MYH M, dos Santos CA, PRL A et al (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70:274–289

    Article  Google Scholar 

  • Carter MR, Stewart BA (1996) Structure and organic matter storage in agriculture soils. CRC, Boca Raton, FL

    Google Scholar 

  • Charousova I, Medo J, Halenarova E, Javorekova S (2017) Antimicrobial and enzymatic activity of actinomycetes isolated from soils of coastal islands. J Adv Pharm Technol Res 8:46–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Subler S, Edwards CA (2002) Effects of agricultural biostimulants on soil microbial activity and nitrogen dynamics. Appl Soil Ecol 19:249–259

    Article  Google Scholar 

  • Chien CC, Kao CM, Chen DY, Chen SC, Chen CC (2014) Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT contaminated environment. Environ Toxicol Chem 33:1059–1063

    Article  CAS  PubMed  Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier, Burlington, MA, p 386

    Google Scholar 

  • Collins NM (1981) The role of termites in the decomposition of wood and leaf litter in the Southern Guinea savanna of Nigeria. Oecologia 51:389–399

    Article  CAS  PubMed  Google Scholar 

  • Cornaby BW, Gist CS, Crossley DA Jr (1975) Resource partitioning in leaf-litter faunas from hardwood and hardwood-converted-to-pine forests. In: Howell FG, Gentry JB, Smith MH (eds) Mineral cycling in southeastern ecosystems. Technical Information Center, Office of Public Affairs, US Energy Research and Development Administration, Washington, DC, pp 588–597

    Google Scholar 

  • Culliney TW (2013) Role of arthropods in maintaining soil fertility. Agriculture 3:629–659

    Article  Google Scholar 

  • Daynes CN, Zhang N, Saleeba JA, McGee PA (2012) Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil Biol Biochem 48:151–161

    Article  CAS  Google Scholar 

  • de Menezes AB, Prendergast-Miller MT, Macdonald LM, Toscas P, Baker G, Farrell M et al (2018) Earthworm-induced shifts in microbial diversity in soils with rare versus established invasive earthworm populations. FEMS Microbiol Ecol 94:051

    Google Scholar 

  • Degens BP (1997) Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review. Soil Res 35:431–460

    Article  Google Scholar 

  • Deleporte S, Tillier P (1999) Long-term effects of mineral amendments on soil fauna and humus in an acid beech forest floor. For Ecol Manag 118:245–252

    Article  Google Scholar 

  • Diehl D (2013) Soil water repellency: dynamics of heterogeneous surfaces. Colloids Surf A Physicochem Eng Asp 432:8–18

    Article  CAS  Google Scholar 

  • Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88:119–127

    Article  Google Scholar 

  • Doran JW, Jones AJ (1996) Soil quality and health: indicators of sustainability. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality, SSSA Special Publication Number 49. Soil Science Society of America, Madison, WI, pp XI–XIV

    Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America, Madison, WI, pp 3–21

    Chapter  Google Scholar 

  • Edwards CA (1974) Macroarthropods. In: Dickinson CH, Pugh GJE (eds) Biology of plant litter decomposition, vol 2. Academic, London, UK, pp 533–554

    Chapter  Google Scholar 

  • Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull 39:23–32

    Google Scholar 

  • Forster SM (1990) The role of microorganisms in aggregate formation and soil stabilization: types of aggregation. Arid Soil Res Rehabil 4:85–98

    Article  Google Scholar 

  • Frac M, Hannula SE, Bełka M, Je-dryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzluebbers AJ (2009) Soil biology. Agric Sci 1(1):47

    Google Scholar 

  • Gardi C, Jeffery S (2009) Soil biodiversity. Joint Research Center, European Commission Luxembourg, Brussels, p 27

    Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 2:367–374

    Article  CAS  Google Scholar 

  • Gomez-Escribano JP, Alt S, Bibb MJ (2016) Next generation sequencing of actinobacteria for the discovery of novel natural products. Mar Drugs 14:E78

    Article  PubMed  CAS  Google Scholar 

  • Gopal M, Bhute SS, Gupta A, Prabhu SR, Thomas GV, Whitman WB et al (2017) Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie Leeuwenhoek 110:1339–1355

    Article  CAS  PubMed  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassall M (1977) Consumption of leaf litter by the terrestrial isopod Philoscia muscorum in relation to food availability in a dune grassland ecosystem. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. Swedish Natural Science Research Council, Stockholm, Sweden, pp 550–553

    Google Scholar 

  • Haynes RJ, Fraser PM (1998) A comparison of aggregate stability and biological activity in earthworm casts and uningested soil as affected by amendment with wheat or Lucerne straw. Eur J Soil Sci 49:629–636

    Article  Google Scholar 

  • Heneghan L, Bolger T (1998) Soil microarthropod contribution to forest ecosystem processes: the importance of observational scale. Plant Soil 205:113–124

    Article  CAS  Google Scholar 

  • Heneghan L, Coleman DC, Zou X, Crossley DA, Haines BL (1998) Soil microarthropod community structure and litter decomposition dynamics: a study of tropical and temperate sites. Appl Soil Ecol 9:33–38

    Article  Google Scholar 

  • Hoeffner K, Monard C, Santonja M, Cluzeau D (2018) Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil Biol Biochem 125:1–9

    Article  CAS  Google Scholar 

  • IBOY (2000) Soil macrofauna: an endangered resource in a changing world. Report of an international workshop held at IRD, Bondy (France) 19–23 June 2000

    Google Scholar 

  • Johns C (2017) Living soils: the role of microorganisms in soil health. Future Directions International 1–7

    Google Scholar 

  • Jose PA, Jha B (2016) New dimensions of research on Actinomycetes: quest for next generation antibiotics. Front Microbiol 7:1295

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176

    Article  CAS  PubMed  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Philos Trans R Soc B Biol Sci 363:685–701

    Article  CAS  Google Scholar 

  • Klotz MG, Bryant DA, Hanson TE (2011) The microbial sulfur cycle. Front Microbiol 2:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Maitra SS (2016) Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway. 3 Biotech 6:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuypers MMM, Marchant HK, Kartal B (2018) The microbial nitrogen-cycling network. Nat Rev Microbiol 16:263–276

    Article  CAS  PubMed  Google Scholar 

  • Lee KE (1985) Earthworms: their ecology and relationships with soils and land use, vol 411. Academic, New York

    Google Scholar 

  • Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS, Maul JE, Smith JL, Collins HP, Halvorson JJ, Kremer RJ, Lundgren JG, Ducey TF, Jin VL, Karlen DL (2015) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7:988–1027

    Article  CAS  Google Scholar 

  • Leifheit E, Verbruggen E, Rillig M (2015) Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol Biochem 81:323–328

    Article  CAS  Google Scholar 

  • Liang C, Balser TC (2011) Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nat Rev Microbiol 9:75

    Article  CAS  PubMed  Google Scholar 

  • Marcuzzi G (1970) Experimental observations on the rôle of Glomeris spp (Myriapoda, Diplopoda) in the process of humification of litter. Pedobiologia 10:401–406

    Google Scholar 

  • Mason MG, Ball AS, Reeder BJ, Silkstone G, Nicholls P, Wilson MT (2001) Extracellular heme peroxidases in actinomycetes: a case of mistaken identity. Appl Environ Microbiol 67:4512–4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina-Sauza RM, Álvarez-Jiménez M, Delhal A, Reverchon F, Blouin M, Guerrero-Analco JA, Cerdán CR, Guevara R, Villain L, Barois I (2019) Earthworms building up soil microbiota, a review. Front Environ Sci 7:81

    Article  Google Scholar 

  • Mengual C, Roldán A, Caravaca F, Schoebitz M (2014) Advantages of inoculation with immobilized rhizobacteria versus amendment with olive-millwaste in the afforestation of a semiarid area with Pinus halepensis Mill. Ecol Eng 73:1–8

    Article  Google Scholar 

  • Menta C (2012) Soil fauna diversity - function, soil degradation, biological indices, soil restoration. In: Lameed GA (ed) Biodiversity conservation and utilization in a diverse world. IntechOpen, London. https://doi.org/10.5772/51091

    Chapter  Google Scholar 

  • Metting B (1986) Population dynamics of Chlamydomonas sajao and its influence on soil aggregate stabilization in the field. Appl Environ Microbiol 51:1161–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller R, Jastrow J (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Mishra J, Prakash J, Arora NK (2016) Role of beneficial soil microbes in sustainable agriculture and environmental management. Climate Change Environ Sustain 4:137–149

    Article  Google Scholar 

  • Modi HA (2013) Soil microbiology. Pointer Publishers, Jaipur

    Google Scholar 

  • Mora P, Miambi E, Jimenez JJ, Decaens T, Rouland C (2005) Functional complement of biogenic structures produced by earthworms, termites and ants in the neotropical savannas. Soil Biol Biochem 37:1043–1048

    Article  CAS  Google Scholar 

  • Morgan CR (1983) Importance of organic sulfur constituents of forest soils and the role of the soil macrofauna in affecting sulfur flux and transformation. In: Lebrun P, André HM, de Medts A, Grégoire-Wibo C, Wauthy G (eds) New trends in soil biology. Imprimerie J Dieu-Brichart, Ottignies-Louvain-la-Neuve, Belgium, pp 75–85

    Google Scholar 

  • Morgan CR, Mitchell MJ (1987) The effects of feeding by Onisus asellus on leaf litter sulfur constituents. Biol Fertil Soils 3:107–111

    Google Scholar 

  • Nechitaylo TY, Yakimov MM, Godinho M, Timmis KN, Belogolova E, Byzov BA et al (2010) Effect of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on bacterial diversity in soil. Microb Ecol 59:574–587

    Article  PubMed  Google Scholar 

  • Neher DA, Barbercheck ME (1998) Diversity and function of soil mesofauna. In: W Collins & CO (eds) The Biodiversity in Agroecosystems. CRC Press, Boca Raton, FL pp 27–47

    Google Scholar 

  • O’Lear HA, Blair JM (1999) Responses of soil microarthropods to changes in soil water availability in tallgrass prairie. Biol Fertility Soils 29:207–217

    Article  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst CE, Lynch JM (1995) The role of soil microbiology in sustainable intensive agriculture. Adv Plant Pathol 11:229–247

    Article  Google Scholar 

  • Peng S, Guo T, Liu G (2013) The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in Southwest China. Soil Biol Biochem 57:411–417

    Article  CAS  Google Scholar 

  • Petersen H (1994) A review of collembolan ecology in ecosystem context. Acta Zool Fenn 195:111–118

    Google Scholar 

  • Radwan SS, Al-Awadhi H, Sorkhoh NA, El-Nemr IM (1998) Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oily Kuwaiti desert. Microbiol Res 153:247–251

    Article  CAS  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, IMI I, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz N, Lavelle P (2008) Soil macrofauna field manual technical level. Food and Agriculture Organization of The United Nations

    Google Scholar 

  • Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodivers Conserv 7:1207–1219

    Article  Google Scholar 

  • Schaller K (2009) Soil enzymes: valuable indicators of soil fertility and environmental impacts. Bulletin UASVM Horticulture 66:2

    Google Scholar 

  • Seastedt TR, Tate CM (1981) Decomposition rates and nutrient content of arthropods remains in forest litter. Ecology 62:13–19

    Article  CAS  Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    Article  CAS  PubMed  Google Scholar 

  • Sharma IP, Chandra S, Kumar N, Chandra D (2017) PGPR: heart of soil and their role in soil fertility. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Plant-soil-microbe nexus agriculturally important microbes for sustainable, vol I. Springer, Singapore, pp 57–61

    Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Subler S, Dominguez J, Edwards CA (1998) Assessing biological activity of agricultural biostimulants: bioassays for plant growth regulators in three soil additives. Commun Soil Sci Plant Anal 29:859–866

    Article  CAS  Google Scholar 

  • Sun JM, Irzykowski WJ, Edryczka M, Han FX (2005) Analysis of the genetic structure of Sclerotinia sclerotiorum (lib.) de Bary populations from different regions and host plants by random amplified polymorphic DNA markers. J Integr Plant Biol 47:385–395

    Article  CAS  Google Scholar 

  • Swift MJ (2005) Human impacts on biodiversity and ecosystem services: an overview. In: Dighton J, White JF, Oudemans P (eds) The fungal community its organization and role in ecosystems. CRC, Boca Raton, FL, pp 627–641

    Chapter  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley and Los Angeles, CA, p 372

    Google Scholar 

  • Teuben A, Verhoef HA (1992) Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol Fert Soils 14:71–75

    Article  CAS  Google Scholar 

  • Troper HG (1984) Microorganisms and the sulphur cycle. Studies Inorganic Chemistry 5:251–265

    Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems – recent progress and challenges. Glob Chang Biol 12:141–153

    Article  Google Scholar 

  • Tugel AJ, Lewandowski AM (2010) Soil biology primer. Available: www.statlab.iastate.edu/survey/SQI/SoilBiologyPrimer.htm Accessed November 4

  • Ubugunova VI, Lavrent’eva IN, Ubugunov LL, Nikheleeva TP (2007) Mesofauna in soils of the ivolga depression (Western Transbaikal region). Institute of General and Experimental Biology, Russian Academy of Sciences, Buryat Republic, Russia

    Book  Google Scholar 

  • Ward BB, Jensen MM (2014) The microbial nitrogen cycle. Front Microbiol 5:553

    Article  PubMed  PubMed Central  Google Scholar 

  • Wittich RM, Busse HJ, Kampfer P, Tiiola M (2007) Sphingobium aromaticiconvertens sp. nov a xenobiotic compound degrading bacterium from polluted river sediment. Int J Syst Evol Microbiol 57:306–310

    Article  CAS  PubMed  Google Scholar 

  • Wiwatwitaya O, Takeda H (2005) Seasonal changes in soil arthropod abundance in the dry evergreen forest of Northeast Thailand, with special reference to collembolan communities. Ecol Res 20:59–70

    Article  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Zaady E, Groffman PM, Shachak M, Wilby A (2003) Consumption and release of nitrogen by the harvester termite Anacanthotermes ubachi Navas in the northern Negev desert, Israel. Soil Biol Biochem 35:1299–1303

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I am highly thankful to Dr Arun Kumar, Senior Scientist, CSIR-IHBT, Palampur for helping me in preparing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neemisha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neemisha (2020). Role of Soil Organisms in Maintaining Soil Health, Ecosystem Functioning, and Sustaining Agricultural Production. In: Giri, B., Varma, A. (eds) Soil Health. Soil Biology, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-44364-1_17

Download citation

Publish with us

Policies and ethics