Skip to main content
Book cover

Soil Health pp 287–312Cite as

Portraying Microbial Beneficence for Ameliorating Soil Health and Plant Growth

  • Chapter
  • First Online:
  • 1526 Accesses

Part of the book series: Soil Biology ((SOILBIOL,volume 59))

Abstract

Soil microflora is a vital component in improving plant growth as it performs many crucial and primary soil functions such as soil fertility, nutrient cycling, increased availability of limited nutrients, and decomposition of inorganic as well as organic matter. Soil microorganisms also positively influence physical properties of soil like its structure, porosity; aeration, and water infiltration which are favorably affected by their soil aggregate forming capabilities. Further the soil microflora plays an important role in practicing ecofriendly approaches like detoxification (bioremediation) of soils contaminated with toxins and undesirable components added due to anthropogenic activities. The global concern about chemical residues affecting soil health and environment has stimulated interest in the dynamic role of soil microbes in soil protection. Microbial interactions with the plants evoke various kinds of local and systemic response that not only improve plant’s metabolic capability to resist abiotic stress but also indirectly affect the soil health as plant growth, microbial activity, and soil health are closely interlinked. The present review is focused on the central role of soil microbes in ameliorating the harmful effects of chemicals on soil health and plant growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abo-Amer AA (2012) Characterization of a strain of Pseudomonas putida isolated from agricultural soil that degrades cadusafos (an organophosphorus pesticide). World J Microbiol Biotechnol 28:805–814

    Article  CAS  PubMed  Google Scholar 

  • Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Abou-Shanab RAI, Van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68:360–367

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahemad M, Khan MS (2011) Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)specific Rhizobium sp. strain MRL3. Ecotoxicology 20:661–669

    Article  CAS  PubMed  Google Scholar 

  • Ahemad S, Chaudhari SK, Dagar JC, Basak N (2012) Soil aggregates as indicator of soil health in waterlogged sodic soil. J Soil Salinity Water Quality 4(2):92–96

    Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236

    Article  Google Scholar 

  • Barea JM, Aguilar CA, Azcon R (1997) Inter-actions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, UK, pp 65–77

    Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kaira A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  PubMed  Google Scholar 

  • Begum MM, Sariah M, Abidin ZMA, Puteh BA, Rahman AM (2008) Antagonistic potential of selected fungal and bacterial biocontrol agents against Colletotrichum truncatum of soybean seeds. Pertanica J Trop Agric Sci 31:45–53

    Google Scholar 

  • Bennett WF (1993) Nutrient deficiencies and toxicities in crop plants. APS Press, St Paul, MN, p 202

    Google Scholar 

  • Bhandari G (2014) An overview of agrochemicals and their effects on environment in Nepal. Appl Ecol Environ Sci 2(2):66–73

    Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Blaylock AD (1994) Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Co-operative Extension Service, Department of Plant Soil and Insect Sciences College of Agriculture, University of Wyoming, Laramie Wyoming, pp 2–94

    Google Scholar 

  • Bliev UK, Martynov AN, Zarkov AV, Maximova LI (1985) Effect of verpa preparation on the fertility of soddy podzolic soil. Agrochimica 2:97–100

    Google Scholar 

  • Bohme L, Langer U, Bohme F (2005) Microbial biomass, enzyme activities and microbial community structure in two European long term field experiments. Agric Ecosys Environ 109:141–152

    Article  Google Scholar 

  • Bollag JM, Liu SY (1990) A biological transformation processes of pesticides. In: Cheng HH (ed) Pesticide in the environment. Soil Science Society of America, Inc., Madison, pp 169–211

    Google Scholar 

  • Brinson MM, Swift BL, Plantico RC, Barclay JS (1981) Riparian ecosystems: their ecology and status, OBS, vol 81. USA Fish Wildlife Service, Washington, DC, p 17

    Google Scholar 

  • Broughton WJ, Zhang F, Perret X, Staehelin C (2003) Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant Soil 252:129–137

    Article  CAS  Google Scholar 

  • Bunemann EK, McNeill A (2004) Impact of fertilizers on soil biota. In: Lines R (ed) Proceedings current research into soil biology in agriculture. Kelly Tamworth. pp 64–71

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  PubMed  Google Scholar 

  • Canovas D, Cases I, de Lorenzo V (2003) Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ Microbiol 5:1242–1256

    Article  CAS  PubMed  Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes C, Ji G, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15:355–367

    Article  CAS  PubMed  Google Scholar 

  • Charalampos K, Myresiotis VZ, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23:297–310

    Article  CAS  Google Scholar 

  • Chennappa G, Adkar-Purushothama CR, Naik MK, Suraj U, Sreenivasa MY (2014) Impact of pesticides on PGPR activity of Azotobacter sp. isolated from pesticide flooded paddy soils. Greener J Agric Sci 4(4):117–129

    Article  Google Scholar 

  • Chunxiao J, Hongwen S, Tieheng S, Qingmin Z, Yanfeng Z (2009) Immobilization of cadmium in soil by UV affected Baccillus subtilis 38 bioaugmentation and NovoGro amendment. J Hazard Mater 167:170–177

    Article  CAS  Google Scholar 

  • Daane L, Harjono I, Zylstra G, Häggblom M (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das AC, Mukherjee D (1994) Effect of insecticides on the availability of nutrients, nitrogen fixation, and phosphate solubility in the rhizosphere soil of rice. Biol Fertil Soils 18:37–41

    Article  CAS  Google Scholar 

  • Das AC, Mukherjee D (1998a) Insecticidal effects on soil microorganisms and their biochemical processes related to soil fertility. World J Microbiol Biotechnol 14:903–909

    Article  CAS  Google Scholar 

  • Das AC, Mukherjee D (1998b) Persistence of phorate and carbofuran in relation to their effect on the mineralization of C, N, and P in alluvial soil. Bull Environ Contam Toxicol 61:709–715

    Article  CAS  PubMed  Google Scholar 

  • Das AC, Mukherjee D (2000a) Soil application of insecticides influences microorganisms and plant nutrients. Appl Soil Ecol 14:55–62

    Article  Google Scholar 

  • Das AC, Mukherjee D (2000b) Influence of insecticides on microbial transformation of nitrogen and phosphorus in Typic Orchragualf soil. J Agric Food Chem 48:3728–3732

    Article  CAS  PubMed  Google Scholar 

  • De Andrés F, Walter I, Tenorio JL (2007) Revegetation of abandoned agricultural land amended with biosolids. Sci Total Environ 378:81–83

    Article  PubMed  CAS  Google Scholar 

  • De Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119(2):565–573

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehne HW, Schonbeck F (1979) Investigations on the influences of endotropic mycorrhizal on plant diseases, II phenol metabolism and lignifications. Phytopathology 95:210–216

    Article  CAS  Google Scholar 

  • Diaz-Zorita M, Perfect E, Grove JH (2002) Disruptive methods for assessing soil structure. Soil Tillage Res 64:3–22

    Article  Google Scholar 

  • Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agron 56:1–54

    Article  CAS  Google Scholar 

  • Edwards CA (1975) Factors that affect the persistence of pesticides in plants and soils. Pure Appl Chem 42:39–56

    Article  CAS  Google Scholar 

  • Engelen B, Meinken K, Von Wintzingerode F, Heuer H, Malkomes HP, Backhaus H (1998) Monitoring impacts of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Appl Environ Microbiol 64:2814–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2008) FAO land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush

  • FAO (2011) FAOSTAT Statistical databases and data-sets of the Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338:241–254

    Article  PubMed  Google Scholar 

  • Figueira EMAP, Lima AIG, Pereira SAI (2005) Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Can J Microbiol 5:1–6

    Google Scholar 

  • Flemming HC, Wingender J (2001) Relevance of microbial extracellular polymeric substances (EPSs)-parts I: structural and ecological aspects. Water Sci Technol 43:1–8

    Article  CAS  PubMed  Google Scholar 

  • Fulton JM, Erickson AE (1964) Relation between soil aeration and ethyl alcohol accumulation in xylem exudate of tomatoes. Proc Soil Sci Soc Am 28:610–614

    Article  CAS  Google Scholar 

  • Gadagi RS, Krishnaraj P, Kulkarni J, Sa T (2004) The effect of combined Azospirillum inoculation and nitrogen fertilizer on plant growth promotion and yield response of the blanket flower Gaillardia pulchella. Acta Sci Pol Hortorum Cultus 100:323–332

    Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64:459–467

    Article  CAS  PubMed  Google Scholar 

  • Gambrell RP, De Laune RD, Patrick JRWH (1991) Redox processes in soils following oxygen depletion. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen stress. Academic, The Hague, pp 101–117

    Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium resistant plant growth promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  PubMed  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhizal, Glomus fasciculatum, may be partly related to elevated K+/Na+ ratios in root and shoot tissues. Microbiol Ecol 54:753–760

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth ACC deaminase containing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Glover-Amengor M, Tetteh M (2008) Effect of pesticide application rate on yield of vegetables and soil microbial communities. West Afr J App Ecol 12

    Google Scholar 

  • Gouzou L, Burtin G, Philippy R, Bartoli F, Heulin T (1993) Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma 56:479–490

    Article  Google Scholar 

  • Grichko VP, Glick BR (2001a) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001b) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39:19–25

    Article  CAS  Google Scholar 

  • Gullap MK, Dasci M, Erkovan HI, Koc A, Turan M (2014) Plant growth-promoting rhizobacteria (PGPR) and phosphorus fertilizer-assisted phytoextraction of toxic heavy metals from contaminated soils. Commun Soil Sci Plant Anal 45(19):2593–2606

    Article  CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008

    Article  CAS  PubMed  Google Scholar 

  • Gurikar C, Naik MK, Sreenivasa YM (2015) Azotobacter—PGPR activities with special reference to effect of pesticides and biodegradation. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity. Springer Nature, Switzerland, pp 229–244

    Google Scholar 

  • Hansda A, Anshumali VK (2017) Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. Biotech 7:132

    Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bio-protection of plants against soil borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Harris RF, Chesters G, Allen ON, Attoe OJ (1964) Mechanisms involved in soil aggregate stabilization by fungi and bacteria. Soil Sci Soc Am Proc 28:529–532

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in growth promotion: a review. Annu Rev Microbiol 60:579–598

    Article  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hubbell DS, Chapman JE (1946) The genesis of structure of two in two calcareous soil. Soil Sci 62:271–281

    Article  CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel W, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thaspigoesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imfeld G, Vuilleumier S (2012) Measuring the effects of synthetic pesticides on bacterial communities in soil: a review. Eur J Soil Biol 49:1–4

    Article  CAS  Google Scholar 

  • Imtiaj A, Lee ST (2008) Antagonistic effect of three Trichoderma species on the Alternaria porri pathogen of onion blotch. World J Agric Sci 4:13–17

    Google Scholar 

  • International food policy research institute (IFPRI) (2012) Global food policy report. www.ifpri.org › publication › 2012-global-food-policy-report

  • Ishaq A, Khan JA, Ahmed N (1994) Biodegradation of a pesticide alpha-cyano, 3 phenoxybenzyl- 2,2-dimethyl-3 (2,2-dichlorophenyl) by Pseudomonas aeuroginosa. Pak J Agric Res 15:242–250

    CAS  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil water logging and submergence. Annu Rev Plant Physiol 36:145–174

    Article  CAS  Google Scholar 

  • Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolism of herbaceous plants. In: Kozlowski TT (ed) Flooding and plant growth. Academic, New York, pp 47–128

    Chapter  Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112:537–550

    Article  CAS  PubMed  Google Scholar 

  • Janiesch P (1991) Ecophysiological adaptations of higher plants in natural communities to waterlogging. In: Rozema J, Verkleij JAC (eds) Ecological responses to environmental stresses. Kluwer Academic Publishers, The Netherlands, pp 453–477

    Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:665–676

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  • Kaushal M, Mandyal P, Kaushal R (2019) Field based assessment of Capsicum annuum performance with inoculation of rhizobacterial consortia. Microorganisms 7:89

    Article  CAS  PubMed Central  Google Scholar 

  • Kay BD (1990) Rates of change of soil structure under different cropping system. Adv Soil Sci 12:1–52

    Google Scholar 

  • Khan AG, Kuek C, Chaudhary TM, Khoo CS, Hayes WJ (2000) Plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kinney CA, Mandernack KW, Moiser AR (2005) Laboratory investigations into the effects of the pesticides mancozeb chlorothalonil and prosulfuron on nitrous oxide and nitric oxide production in fertilized soil. Soil Biol Biochem 37:837–850

    Article  CAS  Google Scholar 

  • Kozlowski TT, Pallardy SG (1984) Effect of flooding on water, carbohydrate, and mineral relations. In: Kozlowski TT (ed) Flooding and plant growth. Academic, New York, pp 165–193

    Chapter  Google Scholar 

  • Krishna KR, Balakrishna AN, Bagyaraj DJ (1982) Interaction between a vesicul arbuscular mycorrhizal fungus and Streptomyces cinnamomeous and their effects in finger millet. New Phytol 92:401–405

    Article  Google Scholar 

  • Kryuchkova YV, Burygin GL, Gogoleva NE, Gogolev YV (2014) Isolation and characterization of a glyphosate degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol Res 169:99–105

    Article  CAS  PubMed  Google Scholar 

  • Kumari P, Meena M, Upadhyay RS (2018) Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatal Agric Biotechnol 16:155–162

    Article  Google Scholar 

  • Kumon H, Tomoshika K, Matunaga T, Ogawa M, Ohmori HA (1994) Sandwich cup method for the Pseudomonas exopolysaccharides. The IR spectrum of the polymer proved the presence. Microbiol Immunol 38:615–619

    Article  CAS  PubMed  Google Scholar 

  • Lal R (1987) Managing the soils of Sub-Sahara Africa. Science 236:1069–1086

    Article  CAS  PubMed  Google Scholar 

  • Lenné JM, Parbery DG (1976) Phyllosphere antagonists and appressoria formation in Colletotrichum gloeosporioides. Trans Br Mycol Soc 66:334–336

    Article  Google Scholar 

  • Lenntech WT (2009) Chemical properties, health and environmental effects of copper. Lenntech Water Treatment and Purification Holding BV, Delft, The Netherlands, p 2009

    Google Scholar 

  • Li F, Liu M, Li Z, Jiang C, Han F, Che Y (2013) Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Appl Soil Ecol 64:1–6

    Article  Google Scholar 

  • Lindberg T, Granhall U, Berg B (1979) Ethylene formation in some coniferous forest soils. Soil Biol Biochem 11(6):637–643

    Article  CAS  Google Scholar 

  • Liu J, Xie J, Chu Y, Sun C, Chen C, Wang Q (2008) Combined effect of cypermethrin and copper on catalase activity in soil. J Soil Sediment 8:327–332

    Article  CAS  Google Scholar 

  • Lynch JM (1975) Ethylene in the soil. Nature 256:576–577

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere:1–56

    Google Scholar 

  • Malghani S, Chatterjee N, Hu X, Zejiao L (2009) Isolation and characterization of a profenofos degrading bacterium. J Environ Sci 21:1591–1597

    Article  CAS  Google Scholar 

  • Malik MAB, Tesfai K (1985) Pesticidal effect on soybean-rhizobia symbiosis. Plant Soil 85:33–41

    Article  Google Scholar 

  • Malik MAB, Tesfai K (1993) Compatibility of Rhizobium japonicum with commercial pesticides in vitro. Bull Environ Contam Toxicol 31:432–437

    Article  Google Scholar 

  • Manca de Nadra MC, Strasser AM, de Saad AA, de Ruiz HP, Oliver G (1985) Extracellular polysaccharide production by Lactobacillus bulgaricus CRL 420. Milchwissenschaft 40:409–411

    CAS  Google Scholar 

  • Marshall TJ, Holmes JW (1988) Soil physics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Massah J, Azadegan B (2016) Effect of chemical fertilizers on soil compaction and degradation. Agr Mech Asia Afr Latin Am 47(1):44–50

    Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Megadi VB, Tallur PN, Hoskeri RS, Mulla SI, Ninnekar HZ (2010) Biodegradation of pendimethalin by Bacillus circulans. Indian J Biotechnol 9:173–177

    CAS  Google Scholar 

  • Meister A (1995) Glutathione metabolism. Methods Enzymol 251:3–13

    Article  CAS  PubMed  Google Scholar 

  • Menon P, Gopal M, Parsad R (2005) Effects of chlorpyrifos and quinalphos on dehydrogenase activities and reduction of Fe3þ in the soils of two semi-arid fields of tropical. Indian Agric Ecosyst Environ 108:73–83

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Article  Google Scholar 

  • Mishra G, Sapre I, Sharma S, Tiwari A (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury tolerant plant growth promoting rhizobacteria. J Plant Growth Regul 35(4):1000–1012

    Article  CAS  Google Scholar 

  • Mishustin EN (1945) The unstable part of the soil macrostructure. Pochvovedenie 2

    Google Scholar 

  • Mohamed AT, El Hussein AA, El Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology 109:274–279

    Google Scholar 

  • Monkiedje A, Spiteller M (2002) Effects of the phenylamide fungicides, mefenoxam and metalaxyl, on the biological properties of sandy loam and sandy clay soils. Biol Fertil Soils 35:393–398

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2008) Phytofiltration of mercury contaminated water volatization and plant accumulation aspects. Environ Exp Bot 62(1):78–85

    Article  CAS  Google Scholar 

  • Mosse B (1986) Mycorrhiza in sustainable agriculture. Biol Agric Hortic 3:191–209

    Article  Google Scholar 

  • Myresiotis CK, Karaoglanidis GS, Vryzas V, Mourkidou P (2012) Evaluation of plant-growth-promoting rhizobacteria, acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Manag Sci 68(3):404–411

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Nagy PT, Pinter T (2015) Effects of foliar biofertilizer sprays on nutrient uptake, yield, and quality parameters of Blaufrankish (Vitis vinifera L.) grapes. Commun Soil Sci Plant Anal 46(51):219–227

    Article  Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biotechnol 12:567–572

    Article  CAS  PubMed  Google Scholar 

  • Narula N, Gupta KG (1986) Ammonia excretion by Azotobacter chroococcum in liquid culture and soil in the presence of manganese and clay minerals. Plant Soil 93:205–209

    Article  CAS  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701

    Article  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson PS, Hirsch PR (1998) The effects of pesticides on the diversity of culturable soil bacteria. J Appl Microbiol 84:551–558

    Article  CAS  Google Scholar 

  • Niewiadomska A (2004) Effect of carbendazim, imazetapir and thiram on nitrogenase activity, the number of microorganisms in soil and yield of red clover (Trifolium pretense L). Pol J Environ Stud 13:403–410

    CAS  Google Scholar 

  • Niewiadomska A, Klama J (2005) Pesticide side effect on the symbiotic efficiency and nitrogenase activity of Rhizobiaceae bacteria family. Pol J Microbiol 54:43–48

    CAS  PubMed  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Nutmen FJ, Roberts FM (1969) The stimulating effect of some fungicides on Glomerella cingulatain relation to the control of coffee berry disease. Ann Appl Biol 64(2):335–344

    Article  Google Scholar 

  • Ogunseitan OA, Odeyemi O (1985) Effect of lindane, captan and malathion on nitrification, sulphur oxidation, phosphate aerobic heterotrophic soil bacteria to the generic level by solubilization and respiration in tropical soil. Environ Pollut 37:343–354

    Article  CAS  Google Scholar 

  • Patel BB, Bharat B, Patel RS (2011) Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of North Gujarat. J Appl Technol Environ Sanit 1(1):87–92

    Google Scholar 

  • Perfect TJ, Cook AG, Critchley BR, Smith AR (1981) The effect of crop protection with DDT on the microarthropod population of a cultivated forest soil in the sub-humid tropics. Pedobiologia 21:7–18

    Google Scholar 

  • Pezeshki SR, Chambers JL (1985a) Stomatal and photosynthetic response of sweet gum (Liquidambar styraciflua) to flooding. Can J For Res 15:371–375

    Article  Google Scholar 

  • Pezeshki SR, Chambers JL (1985b) Responses of cherrybark oak (Quercus falcata var. pagodaefolia) seedlings to short-term flooding. For Sci 31:760–771

    Google Scholar 

  • Pimentel D, Warneke A (1989) Ecological effects of manure, sewage sludge, and other organic wastes on arthropod populations. Agric Zool Rev 3:1–30

    Google Scholar 

  • Podolskaia VI, Gruzina TG, Ulberg ZP, Sokolovskaia AS, Grishchenko NI (2002) Effect of arsenic on bacterial growth and plasma membrane ATPase activity. Prikl Biokhim Mikrobiol 38:57–62

    CAS  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic, Orlando FL, pp 9–45

    Chapter  Google Scholar 

  • Purwanti IF, Kurniawan SB, Tangahu BV, Rahayu NM (2017) Bioremediation of trivalent chromium in soil using bacteria. Int J Appl Eng Res 12(20):9346–9350

    Google Scholar 

  • Raghuwanshi R, Prasad JK (2018) Perspectives of rhizobacteria with ACC Deaminase activity in plant growth under abiotic stress. In: Giri B, Prasad R, Varma A (eds) Root biology, Soil biology, vol 52. Springer Nature, Cham, pp 303–321

    Chapter  Google Scholar 

  • Ramaiah, Bagyaraj DJ (1989) Root diseases and mycorrhizae, a review. J Phytol Res 2:1–6

    Google Scholar 

  • Rani MS, Lakshmi KV, Devi PS, Madhuri RJ, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:26–31

    Google Scholar 

  • Reid JB, Goss MJ (1981) Effect of living roots of different plant species on the aggregate stability of two arable soils. J Soil Sci 32:521–541

    Article  Google Scholar 

  • Reid JB, Goss MJ (1982) Suppression of decomposition of 14C labelled plant roots in the presence of living roots of maize and perennial ryegrass. J Soil Sci 33:387–398

    Article  CAS  Google Scholar 

  • Revillas JJ, Rodelas B, Pozo C, Martínez-Toledo MV, González-López J (2000) Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and a diazotrophic conditions. J Appl Microbiol 89(3):486–493

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Roberts M (2003) Review of risks from metals in the UK. Chemical Stakcholder Forum, Fourteenth meeting 20

    Google Scholar 

  • Rowe RN, Catlin PB (1971) Differential sensitivity to water logging and cyanogenesis by peach, apricot, and plum roots. J Am Soc Hortic Sci 96:305–308

    Google Scholar 

  • Ruiz-Díez B, Quiñones MA, Fajardo S, López MA, Higueras P, Fernández-Pascual M (2012) Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl Microbiol Biotechnol 96:543–554

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Samuel J, Paul ML, Ravishankar H, Mathur A, Saha DP, Natarajan C (2013) The differential stress response of adapted chromite mine isolates Bacillus subtilis and Escherichia coli and its impact on bioremediation potential. Biodegradation 24:829–842

    Article  CAS  PubMed  Google Scholar 

  • Sanita di Toppi L, Gabrielli R (1999) Response to Cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Santos PF, Whitford WG (1981) The effects of microarthropods on litter decomposition in a Chihuahuan desert ecosystem. Ecology 62:654–663

    Article  Google Scholar 

  • Saptanmasi B, Karayilanoglu T, Kenar L, Serdar M, Kose S, Aydin A (2008) Bacterial biodegradation of aldicarb and determination of bacterium which has the most biodegradative effect. Turk J Biochem 33:209–214

    Google Scholar 

  • Saranya A, Krishnan DU, Ramasamy S (2015) Optimization of lipase production by Myroides odoratimus SKS05-GRD and bioremediation of diesel hydrocarbons. Res J Biotechnol 10(7):1–10

    CAS  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Raghuwanshi R, Singh HB (2015) Trichoderma species mediated differential tolerance against biotic stress of phytopathogens in Cicer arietinum L. J Basic Microbiol 55:195–206

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Raghuwanshi R, Gupta VK, Singh HB (2016a) Chilli anthracnose: the epidemiology and management. Front Microbiol 7:1527

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena A, Raghuwanshi R, Singh HB (2016b) Elevation of defense network in chilli against Colletotrichum capsici by phyllospheric Trichoderma strain. J Plant Growth Regul 35:377–389

    Article  CAS  Google Scholar 

  • Segura A, Ramos JL (2013) Plant-bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24:467–473

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Zaidi A, Ehtram A, Khan SM (2019) In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pest Biochem Physiol 157:33–34

    Article  CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Sheng-wang PAN, Shi-qiang WEI, Xin YUAN, Sheng-xian CAO (2008) The removal and remediation of phenanthrene and pyrene in soil by mixed cropping of Alfalfa and Rape. Agric Sci China 7:1355–1364

    Article  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Shukla KP, Nand Kumar S, Shivesh S (2010) Bioremediation: developments, current practices and perspectives. Gen Eng Biotech J 3:1–20

    CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49:427–434

    Article  CAS  PubMed  Google Scholar 

  • Silva TM, Stets MI, Mazzetto AM, Andrade FD, Pileggi SAV, Favero PR, Cantu MD, Carrilho E, Carneiro PIB, Pileggi M (2007) Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil. Braz J Microbiol 38:522–525

    Article  Google Scholar 

  • Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfan sulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22:845–857

    Article  CAS  PubMed  Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, de Moraes JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Sofia C, Sofia P, Ana L, Etelvina F (2012) The influence of Glutathione on the tolerance of Rhizobium leguminosarum to Cadmium. In: Zaidi A, Wani P, Khan M (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 89–100

    Chapter  Google Scholar 

  • Spohn M, Giani L (2011) Impact of land use change on soil aggregation and aggregate stabilizing compound as dependent on time. Soil Biol Biochem 43:1081–1088

    Article  CAS  Google Scholar 

  • Sukul P (2006) Enzymes activities and microbial biomass in soil as influenced by metalaxyl residues. Soil Biol Biochem 38:320–326

    Article  CAS  Google Scholar 

  • Sylvia DM, William SE (1992) Vesicular arbuscular mycorrhizae and environmental stresses. In: Bethlenfalvey GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Spec Publ, Madison WI, pp 101–124

    Google Scholar 

  • Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110

    CAS  PubMed  Google Scholar 

  • Tancho A, Merckx R, Van Look K, Vlassak K (1992) The effect of carbofuran and monocrotophos on heat output, carbon and nitrogen mineralization of northern Thailand soils. Sci Total Environ 123:241–248

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1979) Stabilization of soil aggregates by the root system of rye grass. Aust J Soil Res 17:429–441

    Article  Google Scholar 

  • Topp E, Vallaeys T, Soulas G (1997) Pesticides: microbial degradation and effects on microorganisms. In: Van Elsas JD, Trevors JT, EMH W (eds) Modern soil microbiology. Mercel Dekker, New York, pp 547–575

    Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S (2017) Tolerance and reduction of chromium (VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front Plant Sci 8:778

    Article  PubMed  PubMed Central  Google Scholar 

  • Uren NC (2007) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil–plant interface. CRC, Boca Raton, FL, pp 1–22

    Google Scholar 

  • Van der Heijden MGA, Rinaudo V, Verbruggen E, Scherrer C, Barberi P, Giovannetti M (2008) The significance of mycorrhizal fungi for crop productivity and eco system sustainability in organic farming systems. Proceedings of the 16th IFOAM Organic World Congress June 16–20 Modena Italy 1–4

    Google Scholar 

  • Vanhooren P, Vandamme EJ (1998) Biosynthesis, physiological role, use and fermentation process characteristics of bacterial exopolysaccharides. Rec Res Develop Ferment Bioeng 1:253–300

    CAS  Google Scholar 

  • Vargas JM (1975) Pesticide degradation. J Arboric 1(12):232–233

    Google Scholar 

  • Vassilev A, Schwitzguebel JP, Thewys T, Van dar Leloe D, Vangronsveld J (2004) The use of plant for metal contamination soil. Sci World J 4:9–34

    Article  CAS  Google Scholar 

  • Watt M, Mc Cully ME, Jeffree CE (1993) Plant and bacterial mucilages of the maize rhizosphere: comparison of their soil binding properties and histochemistry in a model system. Plant Soil 151:151–165

    Article  CAS  Google Scholar 

  • Weary GC, Merriam HG (1978) Litter decomposition in a red maple woodlot under natural conditions and under insecticide treatment. Ecology 59:180–184

    Article  CAS  Google Scholar 

  • Wei-hua X, Yun-guo L, Guang-ming XL, Hua-xiao S, Qing-qing P (2009) Characterization of Cr (VI) resistance and reduction by Pseudomonas aeruginosa. Trans Nonferrous Met Soc China 19:1336–1339

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein from arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    Article  CAS  Google Scholar 

  • Wright SF, Franke Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203

    Article  CAS  Google Scholar 

  • Wu F, Gai Y, Jiao Z, Liu Y, Ma X, An L, Wang W, Feng H (2012) The community structure of microbial in arable soil under different long-term fertilization regimes in the Loess Plateau of China. Afr J Microbiol Res 6:6152–6164

    CAS  Google Scholar 

  • Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Liu J, Li L, Qiao C (2009) Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of co-metabolism substrates. J Environ Sci (China) 21:76–82

    Article  CAS  Google Scholar 

  • Yang YH, Yao J, Hu S, Qi Y (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb Ecol 39:72–79

    Article  CAS  PubMed  Google Scholar 

  • Zafar-ul-Hye M, Farooq HM, Zahir ZA (2014) Combined application of ACC-deaminase biotechnology and fertilizers improves maize productivity subjected to drought stress in salt affected soils. Int J Agric Biol 16:591–596

    Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Li Q, Zhang X, Wei K, Chen L, Liang W (2012) Effect of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil Tillage Res 124:196–202

    Article  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, J.K., Dey, R., Gupta, S.K., Raghuwanshi, R. (2020). Portraying Microbial Beneficence for Ameliorating Soil Health and Plant Growth. In: Giri, B., Varma, A. (eds) Soil Health. Soil Biology, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-44364-1_16

Download citation

Publish with us

Policies and ethics