Skip to main content

Arbuscular Mycorrhizal Fungi: The Potential Soil Health Indicators

  • Chapter
  • First Online:
Soil Health

Part of the book series: Soil Biology ((SOILBIOL,volume 59))

Abstract

Over the years the concept and understanding of the importance of the soil health have been well accepted in the agricultural community and there has been a greater focus on standardizing newer parameters as soil health indicators. In the present chapter scope of arbuscular mycorrhizal fungal (AMF) symbioses not only as an indicator but also key determinants of soil health is discussed. Role of AMF in soil health development is discussed via three main mechanisms: influences on plant physiology, soil ecological interactions, and soil structural engineering. Their potential to serve as a soil health indicator is explored with reference to their role in soil aggregation and land or ecological restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander I, Norani A, Lee SS (1992) The role of mycorrhizas in the regeneration of some Malaysian forest trees. Phil Trans R Soc Lond Ser B 335:379–388

    Article  Google Scholar 

  • Amezaga IM, Elustondo EM, Crespo CG, Hortala MA, Sierra LE (2016) Health cards for the evaluation of agricultural sustainability. Span J Soil Sci 6(1):1–20

    Google Scholar 

  • Apfelbaum SI, McElligott K, Thompson R, Tiller E (2019) AES white paper: defining soil health within the context of ecosystem health—a framework. Appl Ecol Serv:1–16

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6(6):457–464

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 24(3):949–958

    Article  Google Scholar 

  • Bagyaraj DJ, Ashwin R (2017) Can mycorrhizal fungi influence plant diversity and production in an ecosystem. In: Bagyaraj DJ, Jamaluddin D (eds) Microbes for restoration of degraded ecosystems. NIPA, New Delhi, pp 1–7

    Google Scholar 

  • Banerjee K, Gadani MH, Srivastava KK, Verma N, Jasrai YT, Jain NK (2013) Screening of efficient arbuscular mycorrhizal fungi for Azadirachta indica under nursery condition: a step towards afforestation of semi-arid region of Western India. Braz J Microbiol 44(2):587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal M, Mukerji KG (1994) Positive correlation between root exudation and VAM induced changes in Rhizosphere mycoflora. Mycorhiza 5:39–44

    Article  Google Scholar 

  • Birhane E, Kuyper TW, Sterck FJ, Bongers F (2010) Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. For Ecol Manag 260(12):2160–2169

    Article  Google Scholar 

  • Bonfante A, Terribile F, Bouma J (2019) Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: an Italian case study. Soil 5(1):1–4

    Article  CAS  Google Scholar 

  • Brundrett MC, Abbott LK (2002) Arbuscular mycorrhizas in plant communities. In: Microorganisms in plant conservation and biodiversity. Springer, Dordrecht, pp 151–193

    Google Scholar 

  • Brundrett MC, Ashwath N (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil 370(1–2):419–433

    Article  CAS  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture (No. 435-2016-33680). Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M (2018) Soil quality–a critical review. Soil Biol Biochem 120:105–125

    Article  CAS  Google Scholar 

  • Cardoso EJ, Vasconcellos RL, Bini D, Miyauchi MY, Santos CA, Alves PR, Paula AM, Nakatani AS, Pereira JD, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric 70(4):274–289

    Article  Google Scholar 

  • Cardozo-Junior FM, Carneiro RFV, Goto BT, Bezerra AAC, Araújo ASF, Nunes LAPL (2012) Arbuscular mycorrhizal fungi in degraded lands in Northeast Brazil. Afr J Microbiol Res 6:7198–7205

    Google Scholar 

  • Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–449

    Article  CAS  PubMed  Google Scholar 

  • Chen LQ (2014) Sweet sugar transporters for phloem transport and pathogen nutrition. New Phytol 201:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi–from ecology to application. Front Plant Sci 9:1270. https://doi.org/10.3389/fpls.2018.01270

    Article  PubMed  PubMed Central  Google Scholar 

  • Chern EC, Tsai DW, Ogunseitan OA (2007) Deposition of glomalin-related soil protein and sequestered toxic metals into watersheds. Environ Sci Technol 41:3566–3572

    Article  CAS  PubMed  Google Scholar 

  • Congreves KA, Hayes A, Verhallen EA, Van Eerd LL (2015) Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil Tillage Res 152:17–28

    Article  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  PubMed  Google Scholar 

  • Cosme M, Fernández I, Van der Heijden MG, Pieterse CM (2018) Non-mycorrhizal plants: the exceptions that prove the rule. Trends Plant Sci 23(7):577–587

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Moora M, Opik M, Adholeya A, Ainsaar L, Ba A, Johnson NC (2015) Global assessment of arbuscular mycorrhizal fungal diversity reveals very low endemism. Science 349(6251):970–973

    Article  CAS  PubMed  Google Scholar 

  • de Souza RG, da Silva DKA, de Mello CMA, Goto BT, da Silva FSB, Sampaio EVSB, Maia LC (2013) Arbuscular mycorrhizal fungi in revegetated mined dunes. Land Degrad Dev 24:147–155

    Article  Google Scholar 

  • Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88:119–127

    Article  Google Scholar 

  • Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, pp 25–37

    Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Fokom R, Adamou S, Teugwa MC, Begoude Boyogueno AD, Nana WL, Ngonkeu MEL, Tchameni NS, Nwaga D, Tsala NG, Amvam Zollo PH (2012) Glomalin related soil protein, carbon, nitrogen and soil aggregate stability as affected by land use variation in the humid forest zone of South Cameroon. Soil Tillage Res 120:69–75

    Article  Google Scholar 

  • Gao Y, Zhou Z, Ling W, Hu X, Chen S (2017) Glomalin related soil protein enhances the availability of polycyclic aromatic hydrocarbons in soil. Soil Biol Biochem 107:129–132

    Article  CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    PubMed  PubMed Central  Google Scholar 

  • Gillespie AW, Farrell RE, Walley FL, Ross AR, Leinweber P, Eckhardt KU, Regier TZ, Blyth RI (2011) Glomalin-related soil protein contains non-mycorrhizal-related heat-stable proteins, lipids and humic materials. Soil Biol Biochem 43:766–777

    Article  CAS  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281(1–2):15–24

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130(3):317–323

    Article  CAS  PubMed  Google Scholar 

  • Gupta MM, Aggarwal A, Asha (2018a) From mycorrhizosphere to rhizosphere microbiome: the paradigm shift. In: Giri B, Parasad R, Varma A (eds) Root biology. Springer, Cham, pp 487–500

    Chapter  Google Scholar 

  • Gupta MM, Gupta A, Kumar P (2018b) Urbanization and biodiversity of arbuscular mycorrhizal fungi: the case study of Delhi, India. Rev Biol Trop 66(4):1563–1574

    Article  Google Scholar 

  • Gupta MM, Chourasiya D, Sharma MP (2019) Diversity of arbuscular mycorrhizal fungi in relation to sustainable plant production systems. In: Microbial diversity in ecosystem sustainability and biotechnological applications. Springer, Singapore, pp 167–186

    Chapter  Google Scholar 

  • Habte M (1989) Impact of simulated erosion on the abundance and activity of indigenous vesicular-arbuscular mycorrhizal endophytes in an Oxisol. Biol Fertil Soils 7:164–167

    Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68(1):139–146

    Article  CAS  PubMed  Google Scholar 

  • Jacott CN, Murray JD, Ridout CJ (2017) Trade-offs in arbuscular mycorrhizal symbiosis: disease resistance, growth responses and perspectives for crop breeding. Agronomy 7(4):75–80

    Article  CAS  Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12:56–64

    Article  Google Scholar 

  • Janos DP, Garamszegi S, Beltran B (2008) Glomalin extraction and measurement. Soil Biol Biochem 40:728–739

    Article  CAS  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112:101–107

    Article  Google Scholar 

  • Jeffries P, Craven-Griffiths A, Barea JM, Levy Y, Dodd JC (2002) Application of arbuscular mycorrhizal fungi in the revegetation of decertified Mediterranean ecosystems. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser, Basel, pp 151–174

    Chapter  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2008) Soil health in agricultural systems. Phil Trans R Soc Lond Ser B Biol Sci 363(1492):685–701

    Article  CAS  Google Scholar 

  • Kikvidze Z, Armas C, Fukuda K, Martínez-García LB, Miyata M, Oda-Tanaka A (2010) The role of arbuscular mycorrhizae in primary succession: differences and similarities across habitats. Web Ecol 10:50–57

    Article  Google Scholar 

  • Laisram J, Maikhuri RK, Rao KS (2012) Soil quality and soil health: a review. Int J Ecol Environ Sci 38(1):19–37

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Lehmann A, Zheng W, Ryo M, Soutschek K, Rongstock R, Maass S, Rillig MC (2019) Fungal traits important for soil aggregation. BioRxiv 1:732628

    Google Scholar 

  • Leifheit EF, Verbruggen E, Rillig MC (2014) Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol Biochem 81:323–328

    Article  CAS  Google Scholar 

  • Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y (2018) Modulating plant growth–metabolism coordination for sustainable agriculture. Nature 560:595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan TJ (2000) Soils and environmental quality. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp G155–G169

    Google Scholar 

  • Lovelock CE, Wright SF, Nichols KA (2004) Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: an example from a tropical rain forest soil. Soil Biol Biochem 36(6):1009–1012

    Article  CAS  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Moebius-Clune BN (2016) Comprehensive assessment of soil health: the Cornell framework manual, 3.1 edn. Cornell University, Ithaca, NY

    Google Scholar 

  • Moore-Kucera J, Cox SB, Peyron M, Bailes G, Kinloch K, Karich K, Miles C, Inglis DA, Brodhagen M (2014) Native soil fungi associated with compostable plastics in three contrasting agricultural settings. Appl Microbiol Biotechnol 98:6467–6485

    Article  CAS  PubMed  Google Scholar 

  • Nichols KA, Wright SF (2006) Carbon and nitrogen in operationally-defined soil organic matter pools. Biol Fertil Soils 43:215–220

    Article  CAS  Google Scholar 

  • Pankhurst CE, Hawke BG, MacDonald HJ, Kirkby CA, Buckerfield JC, Michelsen P, O’Brien KA, Gupta VVSR, Doube BM (1995) Evaluation of soil biological properties as potential bioindicators of soil health. Aust J Exp Agric 35:1015–1028

    Article  Google Scholar 

  • Parisi V, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric Ecosyst Environ 105:323–333

    Article  Google Scholar 

  • Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220(4):1059–1057

    Article  PubMed  Google Scholar 

  • Purakayastha TJ, Pathak H, Kumari S, Biswas S, Chakrabarty B, Padaria RN, Kamble K, Pandey M, Sasmal S, Singh A (2019) Soil health card development for efficient soil management in Haryana, India. Soil Tillage Res 191:294–305

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC (2005) Polymers and microorganisms. In: Hillel D (ed) Encyclopedia of soils in the environment. Oxford, UK, Elsevier, pp 287–294

    Chapter  Google Scholar 

  • Rillig MC, Ramsey PW, Morris S, Paul EA (2003) Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Plant Soil 253(2):293–299

    Article  CAS  Google Scholar 

  • Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Sosa-Hernández MA, Roy J, Aguilar-Trigueros CA, Vályi K, Lehmann A (2016) Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Front Plant Sci 7:1625. https://doi.org/10.3389/fpls.2016.01625

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosier CL, Piotrowski JS, Hoye AT, Rillig MC (2008) Intraradical protein and glomalin as a tool for quantifying arbuscular mycorrhizal root colonization. Pedobiologia 52:41–50

    Article  CAS  Google Scholar 

  • Sendek A, Karakoç C, Wagg C, Domínguez-Begines J, do Couto GM, van der Heijden MG, Naz AA, Lochner A, Chatzinotas A, Klotz S, Gómez-Aparicio L (2019) Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 9(1):9650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39(1):221–244

    Article  CAS  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toro M, Azcon R, Barea J (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability ((sup32) P) and nutrient cycling. Appl Environ Microbiol 63(11):4408–4412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • van Es HM, Karlen DL (2019) Reanalysis validates soil health indicator sensitivity and correlation with long-term crop yields. Soil Sci Soc Am J 83(3):721–732. https://doi.org/10.2136/sssaj2018.09.0338

    Article  CAS  Google Scholar 

  • Warkentin BP (1995) The changing concept of soil quality. J Soil Water Conserv 50:226–228

    Google Scholar 

  • Watts-Williams SJ, Cavagnaro TR (2012) Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biol Fertil Soils 48:285–294

    Article  CAS  Google Scholar 

  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223(3):1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Wright SF, Upadhyaya A (1999) Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza 8:283–285

    Article  CAS  Google Scholar 

  • Wright SF, Franke-Synder M, Morton JB, Upadhyaya A (1996) Time course study and partial characterization of a protein on arbuscular mycorrhizal hyphae during active colonization of roots. Plant Soil 181:193–203

    Article  CAS  Google Scholar 

  • Yang X, Yu L, Chen Z, Xu M (2016) Bioavailability of polycyclic aromatic hydrocarbons and their potential application in eco-risk assessment and source apportionment in urban river sediment. Sci Rep 6:23134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, He C, Huang L, Ban Y, Tang M (2017) The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS One 12(8):e0182264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu XQ, Wang CY, Chen H, Tang M (2014) Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica 52:247–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manju M. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M.M. (2020). Arbuscular Mycorrhizal Fungi: The Potential Soil Health Indicators. In: Giri, B., Varma, A. (eds) Soil Health. Soil Biology, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-44364-1_11

Download citation

Publish with us

Policies and ethics