Skip to main content

Combination of Convolutional and Recurrent Neural Networks for Heartbeat Classification

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1153))

Abstract

Electrocardiogram (ECG) plays an essential role in the medical field, it records the electrical activity of the heart over time and provides information about the heart condition. Hence, the cardiologist uses it to detect the abnormalities of the heart and to diagnose the heart diseases. Convolutional Neural Networks (CNNs) have proven their ability in extracting the most important features, Long Short-Term Memory (LSTM) has the capabilities of learning the temporal dependencies between the sequential data. In this paper, a novel method based on the combination of CNN and LSTM is proposed to classify 15 classes of the MIT-BIH dataset automatically without any hand-engineering feature extraction methods. The proposed method consists of data filtering, dynamic technique for heartbeat segmentation, and CNN-LSTM model consists of 12 layers.

Our experimental results of the proposed method achieved promising overall accuracy of 98.16% in classification between 15 classes of the MIT-BIH dataset, which outperforms several heartbeat classification methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization: Cardiovascular diseases (CVDs) (2017). http://www.who.int/mediacentre/factsheets/fs317/en/

  2. World Health Organization: About cardiovascular diseases (CVDs) (2017). https://www.who.int/cardiovascular_diseases/about_cvd/en/

  3. Tantawi, M., Revett, K., Salem, A.B., Tolba, M.F.: Electrocardiogram (ECG): a new burgeoning utility for biometric recognition. In: Hassanien, A., Kim, T.H., Kacprzyk, J., Awad, A. (eds.) Bio-inspiring Cyber Security and Cloud Services: Trends and Innovations. Intelligent Systems Reference Library. Springer, Heidelberg, vol 70, pp. 349–382 (2014)

    Google Scholar 

  4. Alfonso, V.X., Tompkins, J.: Detecting ventricular fibrillation. IEEE Trans. Biomed. Eng. 54(1), 174–177 (2007)

    Article  Google Scholar 

  5. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20, 45–50 (2001)

    Article  Google Scholar 

  6. Kastor, J.A.: Arrhythmias, 2nd edn. W.B. Saunders, London (1994)

    Google Scholar 

  7. Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018). https://doi.org/10.1016/j.compbiomed.2018.03.016

    Article  Google Scholar 

  8. Bakator, M., Radosav, D.: Deep learning and medical diagnosis: a review of literature. Multimodal Technol. Interact. 2, 47 (2018). https://doi.org/10.3390/mti2030047

    Article  Google Scholar 

  9. Min, S., Lee, B., Yoon, S.: Deep learning in bioinformatics. Brief. Bioinf. 18, 851–869 (2017)

    Google Scholar 

  10. Zebardast, B., Ghaffari, A., Masdari, M.: A new generalized regression artificial neural networks approach for diagnosing heart disease. Int. J. Innov. Appl. Stud. 4, 679 (2013)

    Google Scholar 

  11. Abiwinanda, N., Hanif, M., Hesaputra, S.T., Handayani, A., Mengko, T.R.: Brain tumor classification using convolutional neural network. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings, vol. 68, no. 1. Springer, Singapore (2019)

    Google Scholar 

  12. Karthik, S., Srinivasa Perumal, R., Chandra Mouli, P.V.S.S.R.: Breast cancer classification using deep neural networks (2018). https://doi.org/10.1007/978-981-10-6680-1_12

  13. Liu, J., Pan, Y., Li, M., Chen, Z., Tang, L., Lu, C., Wang, J.: Applications of deep learning to MRI images: a survey. Big Data Min. Anal. 1, 1–18 (2018)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2009)

    Article  MATH  Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  17. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation (2016)

    Google Scholar 

  18. Kim, M., et al.: Speaker-independent silent speech recognition from flesh-point articulatory movements using an LSTM neural network. IEEE/ACM Trans. Audio Speech Lang. Process. 25(12), 2323–2336 (2017)

    Article  Google Scholar 

  19. Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)

    Article  Google Scholar 

  20. Yu, S.N., Chou, K.T.: Integration of independent component analysis and neural networks for ECG beat classification. Expert Syst. Appl. 34, 2841–2846 (2008)

    Article  Google Scholar 

  21. Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 8, 437–448 (2013)

    Article  Google Scholar 

  22. Martis, R.J., Acharya, U.R., Mandana, K., Ray, A.K., Chakraborty, C.: Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst. Appl. 39, 11792–11800 (2012)

    Article  Google Scholar 

  23. Yazdanian, H., Nomani, A., Yazdchi, M.R.: Autonomous detection of heartbeats and categorizing them by using support vector machines. IEEE (2013)

    Google Scholar 

  24. El-Saadawy, H., Tantawi, M., Shedeed, H.A., Tolba, M.F.: Hybrid hierarchical method for electrocardiogram heartbeat classification. IET Signal Process. 12(4), 506–513 (2018). https://doi.org/10.1049/iet-spr.2017.0108

    Article  Google Scholar 

  25. Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)

    Article  Google Scholar 

  26. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., San, T.R.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. (2017). https://doi.org/10.1016/j.compbiomed.2017.08.022

    Article  Google Scholar 

  27. Li, D., Zhang, J., Zhang, Q., Wei, X.: Classification of ECG signals based on 1D convolution neural network. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom) (2017). https://doi.org/10.1109/healthcom.2017.8210784

  28. Thakor, N.V., Webster, J.G., Tompkins, W.J.: Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. BME-31(11), 702–706 (1984). https://doi.org/10.1109/tbme.1984.325393

  29. Rectifier (neural networks). https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

  30. MIT-BIH Arrhythmias Database. http://www.physionet.org/physiobank/database/mitdb/. Accessed 5 Sept 2019

  31. Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. ANSI/AAMI EC57:1998 standard. Association for the Advancement of Medical Instrumentation (1998)

    Google Scholar 

  32. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelrahman M. Shaker , Manal Tantawi , Howida A. Shedeed or Mohamed F. Tolba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaker, A.M., Tantawi, M., Shedeed, H.A., Tolba, M.F. (2020). Combination of Convolutional and Recurrent Neural Networks for Heartbeat Classification. In: Hassanien, AE., Azar, A., Gaber, T., Oliva, D., Tolba, F. (eds) Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020). AICV 2020. Advances in Intelligent Systems and Computing, vol 1153. Springer, Cham. https://doi.org/10.1007/978-3-030-44289-7_34

Download citation

Publish with us

Policies and ethics