Abstract
Commitment scheme, together with zero-knowledge proof, is a fundamental tool for cryptographic design. Recently, Baum et al. proposed a commitment scheme (BDLOP), which is by far the most efficient lattice-based one and has been applied on several latest constructions of zero-knowledge proofs. In this paper, we propose a more efficient zero-knowledge proof of knowledge for BDLOP commitment opening with a shorter proof. There are a few technical challenges, and we develop some new techniques: First, we make an adaption of BDLOP commitment by evaluating the opening with the singular value rather than \(\ell _2\) norm in order to get compact parameters. Then, we try to use the bimodal Gaussian technique to minimize the size of the proof. Finally, utilizing a modulus-switch technique, we can retain the size of the commitment.
Keywords
- Lattice-based commitment
- Zero-knowledge proof of knowledge
- Bimodal Gaussian
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
It degenerates to RSIS and RLWE when \(n=1\).
- 2.
We choose \(C=\frac{1}{\sqrt{2\pi }}\) empirically. Besides, for \(\delta =0\) and \(t=5\), the above probability is approximate \(2^{-112}\).
- 3.
Since there is no efficient zero-knowledge proofs that can prove knowledge of the message and randomness in the commit phase, some additional element \(\mathbf{f}\) is applied for a relaxed opening, which makes the zero-knowledge proof can prove something weaker. Such property is also used in [5] and [3].
- 4.
In [21], one should only use \(d=\sqrt{\frac{N\log q}{\log \delta }}\) columns and zero out the others, which results in a short vector with length as \(\min \{q,q^{\frac{N}{d}}\delta ^d\}=\min \{q,q^{\frac{2N}{d}}\}\).
- 5.
In [3], a valid opening of commitment \(\mathbf{c}=\left( \begin{array}{c} \mathbf{c}_1 \\ \mathbf{c}_2\\ \end{array}\right) \) is a 3-tuple \((\mathbf{x},\mathbf{r},\mathbf{f})\) with \(\mathbf{r}=\left( \begin{array}{c} \mathbf{r}_1 \\ \cdots \\ \mathbf{r}_k\\ \end{array}\right) \in \mathcal {R}_q^k\) and \(\mathbf{f}\in \bar{\mathcal {C}}'\), where \(\bar{\mathcal {C}}'\) is a set of differences \(\mathcal {C}'-\mathcal {C}'\) excluding \(\mathbf{0}\). The verifier checks that \(\mathbf{f}\left( \begin{array}{c} \mathbf{c}_1 \\ \mathbf{c}_2\\ \end{array}\right) =\left( \begin{array}{c} \mathbf{A}_1 \\ \mathbf{A}_2\\ \end{array}\right) \mathbf{r}+\mathbf{f}\left( \begin{array}{c} \mathbf{0} \\ \mathbf{x}\\ \end{array}\right) \), and that for all i, \(\Vert \mathbf{r}_i\Vert _2\le 4\sigma \sqrt{N}\).
References
Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)
Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2
Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20
Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-knowledge proofs for lattice encryption and their application to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_29
Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-knowledge proofs for commitments from learning with errors over rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 305–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_16
Blum, M.: Coin flipping by telephone - a protocol for solving impossible problems. In: COMPCON 1982, pp. 133–137. IEEE Computer Society (1982)
Bootle, J., Lyubashevsky, V., Seiler, G.: Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 176–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_7
Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy, EuroS&P, pp. 353–367. IEEE (2018)
Cramer, R., Franklin, M., Schoenmakers, B., Yung, M.: Multi-authority secret-ballot elections with linear work. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_7
Damgård, I.: On Sigma-Protocols. Lectures on Cryptologic Protocol Theory, Faculty of Science, University of Aarhus (2010)
Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_8
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)
Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225
Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way function. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (2007)
Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-knowledge proofs from learning parity with noise. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_40
Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43
Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclotomic rings and applications to lattice-based zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 204–224. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_8
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7_5
Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_13
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices. CoRR abs/1011.3027 (2010)
Xie, X., Xue, R., Wang, M.: Zero knowledge proofs from ring-LWE. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 57–73. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5_4
Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W.: Efficient lattice-based zero-knowledge arguments with standard soundness: construction and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 147–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_6
Acknowledgement
The authors would like to thank the anonymous reviewers for their valuable comments. This work was partially supported by National Natural Science Foundation of China (Nos. 61772520, 61632020, 61472416, 61802392, 61972094), Key Research and Development Project of Zhejiang Province (Nos. 2017C01062, 2020C01078), Beijing Municipal Science and Technology Project (Grant Nos. Z191100007119007, Z191100007119002).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
A Discussion on Protocol of [3] with Compression Technique
A Discussion on Protocol of [3] with Compression Technique
The proof \(\mathbf{z}\) of zero-knowledge proof of opening in [3] contains two part: \(\mathbf{z}^{(1)}\) corresponds to the proof that gets multiplied by the identity matrix of public matrix \(\mathbf{A}_1\) and \(\mathbf{z}^{(2)}\) corresponds to the proof that gets multiplied by \(\mathbf{A}_1'\). The compression technique [2] is to discard \(\mathbf{z}^{(1)}\) totally and the verifier merely checks an approximate equality, i.e. an equality of high-order part.
For an inter x with \(x=\lceil x\rceil _{\gamma }\cdot 2^{\gamma }+[x]_{\gamma }\), we denote \(\lceil x\rceil _{\gamma }\) as the high-order bits and \([x]_{\gamma }=x \bmod 2^{\gamma }\) as the low-order \(\gamma \) bits. The challenge space is \(\mathcal {C}'=\{\mathbf{d}\in \mathcal {R}_q|\Vert \mathbf{d}\Vert _{\infty }=1, \Vert \mathbf{d}\Vert _1=\kappa \}\). The improved protocol \(\varPi _{com}\) of [3] with compression technique [2] is given in Table 3, which satisfies the property of completeness, special soundness and honest-verifier zero-knowledge. Since honest-verifier zero-knowledge property is not affected and will hold as [3] has shown, we only discuss the completeness and special soundness of \(\varPi _{com}\).
Completeness: It is guaranteed by \(\mathbf{A}'_1\mathbf{z}-\mathbf{d}{} \mathbf{c}_1=\mathbf{t}-\mathbf{d}{} \mathbf{r}_1\) and \(\lceil \mathbf{t}-\mathbf{d}{} \mathbf{r}_1 \rceil _{\gamma }=\lceil \mathbf{t}\rceil _{\gamma }\) when \([\mathbf{t}-\mathbf{d}{} \mathbf{r}_1]_{\gamma } < \frac{\gamma }{2}-\max _{\mathbf{d},\mathbf{r}_1}\Vert \mathbf{d}{} \mathbf{r}_1\Vert _2\) holds, which brings an additional abort condition. Thus, adopting an wide-accepted assumption that the low-order bits are uniformly distributed modulo \(\gamma \), the non-abort probability is approximately \((\frac{2(\frac{\gamma }{2}-\max _{\mathbf{d},\mathbf{r}_1}\Vert \mathbf{d}{} \mathbf{r}_1\Vert _2)-1}{\gamma })^N\), which means the larger \(\gamma \) is, the larger non-abort probability we can get.
Special Soundness: Given a commitment \(\mathbf{c}\) and two valid transcripts \((\mathbf{t},\mathbf{d},\mathbf{z}),(\mathbf{t},\mathbf{d}',\mathbf{z}')\), we can extract a valid opening of commitment \(\mathbf{c}\) as follows.
Therefore, there exist two low-order term \(\mathbf{e},\mathbf{e}'\) with \(\Vert \mathbf{e}\Vert _{\infty },\Vert \mathbf{e}'\Vert _{\infty }\le \frac{\gamma }{2}\), such that
From Eqs. (13) and (14), we obtain
and it yields
Notice that \(\Vert \mathbf{e}-\mathbf{e}'\Vert _{\infty }\le \gamma \). Assuming \(\gamma \le 4\sigma \), we have \(\Vert \mathbf{e}-\mathbf{e}'\Vert _2\le 4\sigma \sqrt{N}\). Set \(\mathbf{f}=\mathbf{d}-\mathbf{d}'\), \(\mathbf{r}=\left( \begin{array}{c} \mathbf{e}-\mathbf{e}' \\ \mathbf{z}-\mathbf{z}'\\ \end{array}\right) \) and \(\mathbf{x}=\mathbf{c}_2-\mathbf{f}^{-1}{} \mathbf{A}_2\mathbf{r}\). Then \((\mathbf{x},\mathbf{r},\mathbf{f})\) is a valid openingFootnote 5 of commitment \(\mathbf{c}\) in [3].
Now we claim there is a trade-off between the reduced proof size, non-abort probability and security for \(\varPi _{\text {com}}\). When instantiating the protocol \(\varPi _{\text {com}}\), we have to consider the non-abort probability \((\frac{2(\frac{\gamma }{2}-\max _{\mathbf{d},\mathbf{r}_1}\Vert \mathbf{d}{} \mathbf{r}_1\Vert _2)-1}{\gamma })^N\) for completeness and condition \(\gamma \le 4\sigma \) for special soundness. An observation is that the non-abort probability is \(3.7\times 10^{-4}\) with \(\sigma \approx 27000\) and \(\gamma \approx 108000\) under the parameter in [3] (Set I-[3] in Table 2). Thus, it is inevitable to expand \(\sigma \) for a practical non-abort probability. If we choose the non-abort probability \((\frac{2(\frac{\gamma }{2}-\max _{\mathbf{d},\mathbf{r}_1}\Vert \mathbf{d}{} \mathbf{r}_1\Vert _2)-1}{\gamma })^N\approx 0.3\), then Gaussian parameter \(\sigma \) should be 6.3\(\times \) larger than before, which may result in a weaker SIS problem. In fact, the root Hermite factor of SIS increases to 1.0047, though the proof size can be reduced to 5KB under the expanded \(\sigma \). Thus, it seems such improvement with compression technique is possible but at the cost of low non-abort probability or security.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tao, Y., Wang, X., Zhang, R. (2020). Short Zero-Knowledge Proof of Knowledge for Lattice-Based Commitment. In: Ding, J., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2020. Lecture Notes in Computer Science(), vol 12100. Springer, Cham. https://doi.org/10.1007/978-3-030-44223-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-44223-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44222-4
Online ISBN: 978-3-030-44223-1
eBook Packages: Computer ScienceComputer Science (R0)