Skip to main content

Discovering the IPv6 Network Periphery

  • Conference paper
  • First Online:
Passive and Active Measurement (PAM 2020)

Abstract

We consider the problem of discovering the IPv6 network periphery, i.e., the last hop router connecting endhosts in the IPv6 Internet. Finding the IPv6  periphery using active probing is challenging due to the IPv6 address space size, wide variety of provider addressing and subnetting schemes, and incomplete topology traces. As such, existing topology mapping systems can miss the large footprint of the IPv6  periphery, disadvantaging applications ranging from IPv6 census studies to geolocation and network resilience. We introduce “edgy,” an approach to explicitly discover the IPv6 network periphery, and use it to find >64M IPv6  periphery router addresses and >87M links to these last hops – several orders of magnitude more than in currently available IPv6 topologies. Further, only 0.2% of edgy’s discovered addresses are known to existing IPv6 hitlists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zwangstrennung (forced IP address change) (2018). https://de.wikipedia.org/wiki/Zwangstrennung

  2. Huawei LTE CPE B315 (MTS 8212FT) - discussion (2019). http://4pda.ru/forum/index.php?showtopic=700481&st=3580

  3. The CAIDA UCSD AS Classification Dataset (2019). http://www.caida.org/data/as-classification

  4. Speedport II LTE router status (2020). https://telekomhilft.telekom.de/riokc95758/attachments/riokc95758/552/327892/1/routerstatus.pdf

  5. Berger, A., Weaver, N., Beverly, R., Campbell, L.: Internet nameserver IPv4 and IPv6 address relationships. In: Proceedings of ACM Internet Measurement Conference (IMC) (2013)

    Google Scholar 

  6. Beverly, R.: Yarrp’ing the Internet: randomized high-speed active topology discovery. In: Proceedings of ACM Internet Measurement Conference (IMC), November 2016

    Google Scholar 

  7. Beverly, R., Durairajan, R., Plonka, D., Rohrer, J.P.: In the IP of the beholder: strategies for active IPv6 topology discovery. In: Proceedings of ACM Internet Measurement Conference (IMC), November 2018

    Google Scholar 

  8. CAIDA: The CAIDA UCSD IPv6 Topology Dataset (2018). http://www.caida.org/data/active/ipv6_allpref_topology_dataset.xml

  9. CAIDA: The CAIDA UCSD IPv6 Routed /48 Topology Dataset (2019). https://www.caida.org/data/active/ipv6_routed_48_topology_dataset.xml

  10. Chittimaneni, K., Chown, T., Howard, L., Kuarsingh, V., Pouffary, Y., Vyncke, E.: Enterprise IPv6 Deployment Guidelines. RFC 7381 (Informational), October 2014. https://www.rfc-editor.org/rfc/rfc7381.txt

  11. Czyz, J., Luckie, M., Allman, M., Bailey, M.: Don’t forget to lock the back door! A characterization of IPv6 network security policy. In: Network and Distributed Systems Security (NDSS) (2016)

    Google Scholar 

  12. Czyz, J., Allman, M., Zhang, J., Iekel-Johnson, S., Osterweil, E., Bailey, M.: Measuring IPv6 adoption. SIGCOMM Comput. Commun. Rev. 44(4), 1–32 (2014)

    Article  Google Scholar 

  13. Dhamdhere, A., Luckie, M., Huffaker, B., Claffy, K., Elmokashfi, A., Aben, E.: Measuring the deployment of IPv6: topology, routing and performance. In: Proceedings of ACM Internet Measurement Conference (IMC) (2012)

    Google Scholar 

  14. Fan, X., Heidemann, J.: Selecting representative IP addresses for internet topology studies. In: Proceedings of ACM Internet Measurement Conference (IMC) (2010)

    Google Scholar 

  15. Foremski, P., Plonka, D., Berger, A.: Entropy/IP: uncovering structure in IPv6 addresses. In: Proceedings of ACM Internet Measurement Conference (IMC) (2016)

    Google Scholar 

  16. Gasser, O., et al.: Clusters in the expanse: understanding and unbiasing IPv6 hitlists. In: Proceedings of ACM Internet Measurement Conference (IMC) (2018)

    Google Scholar 

  17. Gont, F., Chown, T.: Network reconnaissance in IPv6 networks. RFC 7707 (Informational), March 2016. http://www.ietf.org/rfc/rfc7707.txt

  18. Hyun, Y., Claffy, K.: Archipelago measurement infrastructure (2018). http://www.caida.org/projects/ark/

  19. IAB, IESG: Recommendations on IPv6 Address Allocations to Sites. RFC 3177 (Informational), September 2001. http://www.ietf.org/rfc/rfc3177.txt

  20. Livadariu, I., Ferlin, S., Alay, Ö., Dreibholz, T., Dhamdhere, A., Elmokashfi, A.: Leveraging the IPv4/IPv6 identity duality by using multi-path transport. In: 2015 IEEE Conference on Computer Communications Workshops (2015)

    Google Scholar 

  21. Luckie, M., Beverly, R.: The impact of router outages on the AS-level Internet. In: Proceedings of ACM SIGCOMM (2017)

    Google Scholar 

  22. Martin, J., Rye, E.C., Beverly, R.: Decomposition of MAC address structure for granular device inference. In: Proceedings of the Annual Computer Security Applications Conference (ACSAC), December 2016

    Google Scholar 

  23. Murdock, A., Li, F., Bramsen, P., Durumeric, Z., Paxson, V.: Target generation for Internet-wide IPv6 scanning. In: Proceedings of ACM Internet Measurement Conference (IMC) (2017)

    Google Scholar 

  24. Narten, T., Draves, R., Krishnan, S.: Privacy extensions for stateless address autoconfiguration in IPv6. RFC 4941, September 2007. http://www.ietf.org/rfc/rfc4941.txt

  25. Narten, T., Huston, G., Roberts, L.: IPv6 address assignment to end sites. RFC 6177 (Best Current Practice), March 2011. http://www.ietf.org/rfc/rfc6177.txt

  26. Plonka, D., Berger, A.: Temporal and spatial classification of active IPv6 addresses. In: Proceedings of ACM Internet Measurement Conference (IMC) (2015)

    Google Scholar 

  27. Pujol, E., Richter, P., Feldmann, A.: Understanding the share of IPv6 traffic in a dual-stack ISP. In: Passive and Active Measurement (PAM) (2017)

    Google Scholar 

  28. RIPE: Best current operational practice for operators: IPv6 prefix assignment for end-users - persistent vs non-persistent, and what size to choose (2017). https://www.ripe.net/publications/docs/ripe-690

  29. Rohrer, J.P., LaFever, B., Beverly, R.: Empirical study of router IPv6 interface address distributions. IEEE Internet Comput. 20, 36–45 (2016)

    Article  Google Scholar 

  30. Rye, E.C., Beverly, R.: Discovering the IPv6 network periphery (2020). https://arxiv.org/abs/2001.08684

  31. Rye, E.C., Martin, J., Beverly, R.: EUI-64 considered harmful (2019). https://arxiv.org/pdf/1902.08968.pdf

  32. Srisuresh, P., Holdrege, M.: IP Network Address Translator (NAT) terminology and considerations. RFC 2663 (Informational), August 1999. http://www.ietf.org/rfc/rfc2663.txt

  33. Team Cymru: IP to ASN mapping (2019). https://www.team-cymru.org/IP-ASN-mapping.html

  34. Zander, S., Wang, X.: Are we there yet? IPv6 in Australia and China. ACM Trans. Internet Technol. 18(3), 1–20 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jeremy Martin, Thomas Krenc, and Ricky Mok for early feedback, John Heidemann for shepherding, Mike Monahan and Will van Gulik for measurement infrastructure, and the anonymous reviewers for insightful critique. This work supported in part by NSF grant CNS-1855614. Views and conclusions are those of the authors and should not be interpreted as representing the official policies or position of the U.S. government or the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik C. Rye .

Editor information

Editors and Affiliations

Appendix A: Algorithm Details

Appendix A: Algorithm Details

figure c
figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rye, E.C., Beverly, R. (2020). Discovering the IPv6 Network Periphery. In: Sperotto, A., Dainotti, A., Stiller, B. (eds) Passive and Active Measurement. PAM 2020. Lecture Notes in Computer Science(), vol 12048. Springer, Cham. https://doi.org/10.1007/978-3-030-44081-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44081-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44080-0

  • Online ISBN: 978-3-030-44081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics