Skip to main content

A Visibility-Based Approach to Computing Nondeterministic Bouncing Strategies

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIII (WAFR 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Included in the following conference series:

Abstract

Inspired by motion patterns of some commercially available mobile robots, we investigate the power of robots that move forward in straight lines until colliding with an environment boundary, at which point they can rotate in place and move forward again; we visualize this as the robot “bouncing” off boundaries. Different boundary interaction rules can be defined for such robots, such as one that orients the robot relative to its heading prior to collision, or relative to the normal of the boundary. We introduce a new data structure, the bounce visibility graph, which is generated from a polygonal environment definition. The bounce visibility graph can be queried to determine the feasibility of path-based tasks such as navigation and patrolling, assuming we have unavoidable nondeterminism in our actuation. If the task is feasible, then this approach synthesizes a strategy (a sequence of nondeterministic rotations). We also show how to compute stable cyclic trajectories and use these to limit uncertainty in the robot’s position (Software implementation at https://github.com/alexandroid000/bounce_viz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam, T., Bobadilla, L., Shell, D.A.: Minimalist robot navigation and coverage using a dynamical system approach. In: IEEE IRC (2017)

    Google Scholar 

  2. Alam, T., Bobadilla, L., Shell, D.A.: Space-efficient filters for mobile robot localization from discrete limit cycles. IEEE Robot. Autom. Lett. 3(1), 257–264 (2018)

    Article  Google Scholar 

  3. Aronov, B., Davis, A.R., Dey, T.K., Pal, S.P., Prasad, D.C.: Visibility with Multiple Reflections. Springer, Heidelberg (1996)

    Book  Google Scholar 

  4. Brunner, J., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Simple robots in polygonal environments: a hierarchy. In: Algosensors (2008)

    Google Scholar 

  5. Burridge, R.R., Rizzi, A.A., Koditschek, D.E.: Sequential composition of dynamically dexterous robot behaviors. Int. J. Robot. Res. 18(6), 534–555 (1999)

    Article  Google Scholar 

  6. Czyzowicz, J., et al.: The aquarium keeper’s problem. In: Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (1991)

    Google Scholar 

  7. Del Magno, G., Lopes Dias, J., Duarte, P., Gaivão, J.P., Pinheiro, D.: SRB measures for polygonal billiards with contracting reflection laws. Commun. Math. Phys. 329(2), 687–723 (2014)

    Article  MathSciNet  Google Scholar 

  8. ElGindy, H.A., Avis, D.: A linear algorithm for computing the visibility polygon from a point. J. Algorithms 2(2), 186–197 (1981)

    Article  MathSciNet  Google Scholar 

  9. Erdmann, M.A.: Using backprojections for fine motion planning with uncertainty. Int. J. Robot. Res. 5(1), 19–45 (1986)

    Article  Google Scholar 

  10. Erickson, L.H., LaValle, S.M.: Toward the design and analysis of blind, bouncing robots. In: IEEE ICRA (2013)

    Google Scholar 

  11. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  12. Goldberg, K.Y.: Orienting polygonal parts without sensors. Algorithmica 10(2–4), 201–225 (1993)

    Article  MathSciNet  Google Scholar 

  13. Granas, A., Dugundji, J.: Elementary Fixed Point Theorems, pp. 9–84. Springer, New York (2003)

    Book  Google Scholar 

  14. Lewis, J.S., O’Kane, J.M.: Planning for provably reliable navigation using an unreliable, nearly sensorless robot. Int. J. Robot. Res. 32(11), 1342–1357 (2013)

    Article  Google Scholar 

  15. Lozano-Pérez, T., Mason, M.T., Taylor, R.H.: Automatic synthesis of fine-motion strategies for robots. Int. J. Robot. Res. 3(1), 3–24 (1984)

    Article  Google Scholar 

  16. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)

    Article  Google Scholar 

  17. Lynch, K.M., Mason, M.T.: Pulling by pushing, slip with infinite friction, and perfectly rough surfaces. Int. J. Robot. Res. 14(2), 174–183 (1995)

    Article  Google Scholar 

  18. Markarian, R., Pujals, E., Sambarino, M.: Pinball billiards with dominated splitting. Ergodic Theory Dyn. Syst. 30, 1757–1786 (2010)

    Article  MathSciNet  Google Scholar 

  19. Mason, M.T.: The mechanics of manipulation. In: Proceedings IEEE International Conference on Robotics & Automation, pp. 544–548 (1985)

    Google Scholar 

  20. Mayya, S., Pierpaoli, P., Nair, G., Egerstedt, M.: Localization in densely packed swarms using interrobot collisions as a sensing modality. IEEE Trans. Robot. 35(1), 21–34 (2018)

    Article  Google Scholar 

  21. Miller, L.M., Silverman, Y., MacIver, M.A., Murphey, T.D.: Ergodic exploration of distributed information. IEEE Trans. Robot. 32(1), 36–52 (2016)

    Article  Google Scholar 

  22. Nakamura, Y., Sekiguchi, A.: The chaotic mobile robot. IEEE Trans. Robot. Autom. 17(6), 898–904 (2001)

    Article  Google Scholar 

  23. Nilles, A., Becerra, I., LaValle, S.M.: Periodic trajectories of mobile robots. In: IROS (2017)

    Google Scholar 

  24. O’Rourke, J., Streinu, I.: The vertex-edge visibility graph of a polygon. Comput. Geom.: Theory Appl. 10(2), 105–120 (1998)

    Article  MathSciNet  Google Scholar 

  25. Prasad, D.C., Pal, S.P., Dey, T.K.: Visibility with multiple diffuse reflections. Comput. Geom. 10(3), 187–196 (1998)

    Article  MathSciNet  Google Scholar 

  26. Sahin, H., Guvenc, L.: Household robotics: autonomous devices for vacuuming and lawn mowing [applications of control]. IEEE Control Syst. 27(2), 20–96 (2007)

    Article  Google Scholar 

  27. Siméon, T., Laumond, J.P., Nissoux, C.: Visibility based probabilistic roadmaps for motion planning. Adv. Robot. 14(6), 477–493 (2000)

    Article  Google Scholar 

  28. Spagnolie, S.E., Wahl, C., Lukasik, J., Thiffeault, J.L.: Microorganism billiards. Phys. D Nonlinear Phenom. 341, 33–44 (2017)

    Article  MathSciNet  Google Scholar 

  29. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local visibility to global geometry. IJRR 27(9), 1055–1067 (2008)

    Google Scholar 

  30. Szirmay-Kalos, L., Márton, G.: Worst-case versus average case complexity of ray-shooting. Computing 61(2), 103–131 (1998)

    Article  MathSciNet  Google Scholar 

  31. Tabachnikov, S.: Geometry and Billiards. American Mathematical Society, Providence (2005)

    Book  Google Scholar 

  32. Whitney, D.: Force feedback control of manipulator fine motions. Trans. ASME J. Dyn. Syst. Measure. Control 91–97 (1977)

    Google Scholar 

Download references

Acknowledgement

This work was supported by NSF grants 1035345 and 1328018, and CONACyT post-doctoral fellowship 277028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Q. Nilles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nilles, A.Q., Ren, Y., Becerra, I., LaValle, S.M. (2020). A Visibility-Based Approach to Computing Nondeterministic Bouncing Strategies. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_6

Download citation

Publish with us

Policies and ethics