Skip to main content

Generalizing Robot Imitation Learning with Invariant Hidden Semi-Markov Models

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Abstract

Generalizing manipulation skills to new situations requires extracting invariant patterns from demonstrations. For example, the robot needs to understand the demonstrations at a higher level while being invariant to the appearance of the objects, geometric aspects of objects such as its position, size, orientation and viewpoint of the observer in the demonstrations. In this paper, we propose an algorithm that learns a joint probability density function of the demonstrations with invariant formulations of hidden semi-Markov models to extract invariant segments (also called sub-goals or options), and smoothly follow the generated sequence of states with a linear quadratic tracking controller. The algorithm takes as input the demonstrations observed with respect to different coordinate systems describing virtual landmarks or objects of interest, and adapts the segments according to the environmental changes in a systematic manner. We present variants of this algorithm in latent space with low-rank covariance decompositions, semi-tied covariances, and non-parametric online estimation of model parameters under small variance asymptotics; yielding considerably low sample and model complexity for acquiring new manipulation skills. The algorithm allows a Baxter robot to learn a pick-and-place task while avoiding a movable obstacle based on only 4 kinesthetic demonstrations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Setting \(d_i = 0\) by choosing \(\lambda _1 \gg 0\) gives the loss function formulation with isotropic Gaussian under small variance asymptotics [22].

References

  1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  2. Borrelli, F., Bemporad, A., Morari, M.: Predictive Control for Linear and Hybrid Systems. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  3. Broderick, T., Kulis, B., Jordan, M.I.: MAD-Bayes: map-based asymptotic derivations from Bayes. In: International Conference on Machine Learning, ICML, pp. 226–234 (2013)

    Google Scholar 

  4. Calinon, S.: A tutorial on task-parameterized movement learning and retrieval. Intell. Serv. Robot. 9(1), 1–29 (2016)

    Article  Google Scholar 

  5. Duan, Y., Andrychowicz, M., Stadie, B.C., Ho, J., Schneider, J., Sutskever, I., Abbeel, P., Zaremba, W.: One-shot imitation learning. CoRR, abs/1703.07326 (2017)

    Google Scholar 

  6. Figueroa, N., Billard, A.: Transform-invariant non-parametric clustering of covariance matrices and its application to unsupervised joint segmentation and action discovery. CoRR, abs/1710.10060 (2017)

    Google Scholar 

  7. Fox, R., Shin, R., Krishnan, S., Goldberg, K., Song, D., Stoica, I.: Parametrized hierarchical procedures for neural programming. In: The International Conference on Learning Representations, ICLR 2018 (2018)

    Google Scholar 

  8. Gales, M.J.F.: Semi-tied covariance matrices for hidden Markov models. IEEE Trans. Speech Audio Process. 7(3), 272–281 (1999)

    Article  Google Scholar 

  9. Ho, J., Ermon, S.: Generative adversarial imitation learning. CoRR, abs/1606.03476 (2016)

    Google Scholar 

  10. Ijspeert, A., Nakanishi, J., Pastor, P., Hoffmann, H., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013)

    Article  MathSciNet  Google Scholar 

  11. Krishnan, S., Fox, R., Stoica, I., Goldberg, K.: DDCO: discovery of deep continuous options for robot learning from demonstrations. CoRR (2017)

    Google Scholar 

  12. Kulic, D., Takano, W., Nakamura, Y.: Incremental learning, clustering and hierarchy formation of whole body motion patterns using adaptive hidden Markov chains. Int. J. Robot. Res. 27(7), 761–784 (2008)

    Article  Google Scholar 

  13. Kulis, B., Jordan, M.I.: Revisiting k-means: new algorithms via Bayesian nonparametrics. In: International Conference on Machine Learning ICML, pp. 513–520 (2012)

    Google Scholar 

  14. Lee, D., Ott, C.: Incremental motion primitive learning by physical coaching using impedance control. In: Proceedings of the IEEE/RSJ Intl Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, pp. 4133–4140, October 2010

    Google Scholar 

  15. McLachlan, G.J., Peel, D., Bean, R.W.: Modelling high-dimensional data by mixtures of factor analyzers. Comput. Stat. Data Anal. 41(3–4), 379–388 (2003)

    Article  MathSciNet  Google Scholar 

  16. Jose Medina, R., Billard, A.: Learning stable task sequences from demonstration with linear parameter varying systems and hidden Markov models. In: Conference on Robot Learning (CoRL) (2017)

    Google Scholar 

  17. Nehaniv, C.L., Dautenhahn, K. (eds.): Imitation and Social Learning in Robots, Humans, and Animals: Behavioural, Social and Communicative Dimensions. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  18. Niekum, S., Osentoski, S., Konidaris, G., Barto, A.G.: Learning and generalization of complex tasks from unstructured demonstrations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5239–5246 (2012)

    Google Scholar 

  19. Osa, T., Pajarinen, J., Neumann, G., Bagnell, A., Abbeel, P., Peters, J.: An Algorithmic Perspective on Imitation Learning. Now Publishers Inc. (2018)

    Google Scholar 

  20. Paraschos, A., Daniel, C., Peters, J.R., Neumann, G.: Probabilistic movement primitives. In: Advances in Neural Information Processing Systems 26, pp. 2616–2624 (2013)

    Google Scholar 

  21. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–285 (1989)

    Article  Google Scholar 

  22. Roychowdhury, A., Jiang, K., Kulis, B.: Small-variance asymptotics for hidden Markov models. In: Advances in Neural Information Processing Systems 26, pp. 2103–2111. Curran Associates, Inc. (2013)

    Google Scholar 

  23. Shiarlis, K., Wulfmeier, M., Salter, S., Whiteson, S., Posner, I.: Taco: learning task decomposition via temporal alignment for control. In: International Conference on Machine Learning, ICML 2018 (2018)

    Google Scholar 

  24. Tanwani, A.K.: Generative models for learning robot manipulation skills from humans. Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, Switzerland (2018)

    Google Scholar 

  25. Tanwani, A.K., Calinon, S.: Learning robot manipulation tasks with task-parameterized semitied hidden semi-Markov model. IEEE Robot. Autom. Lett. 1(1), 235–242 (2016)

    Article  Google Scholar 

  26. Tanwani, A.K., Calinon, S.: Small-variance asymptotics for non-parametric online robot learning. Int. J. Robot. Res. 38(1), 3–22 (2019)

    Article  Google Scholar 

  27. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. J. Am. Stat. Assoc. 101(476), 1566–1581 (2006)

    Article  MathSciNet  Google Scholar 

  28. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  29. Wilson, A.D., Bobick, A.F.: Parametric hidden Markov models for gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 884–900 (1999)

    Article  Google Scholar 

  30. Wolpert, D.M., Diedrichsen, J., Flanagan, J.R.: Principles of sensorimotor learning. Nat. Rev. 12, 739–751 (2011)

    Article  Google Scholar 

  31. Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., Savarese, S.: Neural task programming: learning to generalize across hierarchical tasks. CoRR, abs/1710.01813 (2017)

    Google Scholar 

  32. Yu, S.-Z.: Hidden semi-Markov models. Artif. Intell. 174, 215–243 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was, in large part, carried out at Idiap Research Institute and Ecole Polytechnique Federale de Lausanne (EPFL) Switzerland. This work was in part supported by the DexROV project through the EC Horizon 2020 program (Grant 635491), and the NSF National Robotics Initiative Award 1734633 on Scalable Collaborative Human-Robot Learning (SCHooL). The information, data, comments, and views detailed herein may not necessarily reflect the endorsements of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Tanwani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanwani, A.K. et al. (2020). Generalizing Robot Imitation Learning with Invariant Hidden Semi-Markov Models. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_12

Download citation

Publish with us

Policies and ethics