Skip to main content

A Secure Distributed e-Health System for the Management of Personal Health Metrics Data

  • Conference paper
  • First Online:
Book cover Advanced Information Networking and Applications (AINA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1151))

  • 2079 Accesses

Abstract

The definition of smart city as a broad concept values the versatile acquisition, storage, and processing of relevant data for the city’s community. In this context, health data occupies a privileged place. The reliable gathering of personal health information has become recently possible through wearable medical devices. These devices usually do not store the data locally and offer, in the most favourable case, limited basic data processing features, and virtually no advanced processing capabilities for the collected personal health data. This paper describes an integrated distributed e-Health system, which collects health data from the enrolled city residents, and allows secure storage and processing of medical data in cloud by using a comprehensive encryption model to preserve the data privacy, which is based on the NTRU public-key cryptosystem. The system collects the user data through a client application module that is installed on the user’s smartphone or smartwatch, and securely transports it to the cloud backend. The homomorphic processing of the encrypted data is performed using the Apache Spark service. The event-based handlers are triggered by the IBM OpenWhisk programming service. The prototype has been tested using a real-world use case, which involves five hundred residents of Brasov City, Romania.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University, Stanford (2009)

    MATH  Google Scholar 

  2. Li, Q., Cao, G., La Porta, T.: Efficient and privacy-aware data aggregation in mobile sensing. IEEE Trans. Depend. Secure Comput. 11(2), 115–129 (2014)

    Article  Google Scholar 

  3. Zhang, R., Shi, J., Zhang, Y., Zhang, C.: Verifiable privacy-preserving aggregation in people-centric urban sensing systems. IEEE J. Sel. Areas Commun. 31(9), 268–278 (2013)

    Article  Google Scholar 

  4. Zhou, J., Cao, Z., Dong, X., Lin, X.: PPDM: privacy-preserving protocol for dynamic medical text mining and image feature extraction from secure data aggregation in cloud-assisted e-healthcare systems. IEEE J. Sel. Topics Sign. Process. 9(7), 1332–1344 (2015)

    Article  Google Scholar 

  5. Shi, E., Chan, T.H.H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Proceedings NDSS Symposium, vol. 2, no. 3, p. 4 (2011)

    Google Scholar 

  6. Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homomorphic encryption. In: Proceedings SmartGridComm Conference, pp. 327–332 (2010)

    Google Scholar 

  7. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Proceedings CRYPTO Conference, pp. 465–482 (2010)

    Google Scholar 

  8. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Proceedings CRYPTO Conference, pp. 111–131 (2011)

    Google Scholar 

  9. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and matrix computations, with applications. In: Proceedings 2012 ACM Conference on Computer and Communications Security, pp. 501–512 (2012)

    Google Scholar 

  10. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on dynamic sets. In: Proceedings CRYPTO Conference, pp. 91–110 (2011)

    Google Scholar 

  11. Guo, L., Fang, Y., Li, M., Li, P.: Verifiable privacy-preserving monitoring for cloud-assisted mHealth systems. In: Proceedings INFOCOM Conference, pp. 1026–1034 (2015)

    Google Scholar 

  12. Zhuo, G., Jia, Q., Guo, L., Li, M., Fang, Y.: Privacy-preserving verifiable proximity test for location-based services. In: Proceedings GLOBECOM Conference, pp. 1–6 (2015)

    Google Scholar 

  13. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: Proceedings ACM SIGSAC Conference on Computer and Communications Security, pp. 844–855 (2014)

    Google Scholar 

  14. Jaeger, T., Schiffman, J.: Outlook: cloudy with a chance of security challenges and improvements. J. IEEE Secur. Priv. 8(1), 77–80 (2010)

    Article  Google Scholar 

  15. Kuzu, M., Saiful Islam, M., Kantarcioglu, M.: Efficient similarity search over encrypted data. In: Proceedings IEEE International Conference on Data Engineering, Washington, pp. 1156–1167 (2012)

    Google Scholar 

  16. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2014)

    Article  Google Scholar 

  17. Orencik, C., Savas, E.: An efficient privacy-preserving multi-keyword search over encrypted cloud data with ranking. J. Parallel Distrib. Databases 32(1), 119–160 (2014)

    Article  Google Scholar 

  18. Yu, J., Lu, P., Zhu, Y., Xue, G., Li, M.: Toward secure multikeyword top-k retrieval over encrypted cloud data. IEEE Trans. Depend. Secure Comput. 10(4), 239–250 (2013)

    Article  Google Scholar 

  19. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Proceedings of 28th Conference on Theory and Applications of Cryptography Techniques, pp. 224–241 (2009)

    Google Scholar 

  20. Breiter, G., Behrendt, M.: Life cycle and characteristics of services in the world of cloud computing. IBM J. Res. Dev. 53(4), 31–38 (2009)

    Article  Google Scholar 

  21. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Proceedings of Annual FOCS Symposium, pp. 97–106 (2011)

    Google Scholar 

  22. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Proceedings of EUROCRYPT Conference, pp. 24–43 (2010)

    Google Scholar 

  23. Coron, J., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic encryption over the integers with shorter public keys. In: Proceedings CRYPTO Conference, pp. 487–504 (2011)

    Google Scholar 

  24. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Proceedings of EUROCRYPT Conference, pp. 465–482 (2012)

    Google Scholar 

  25. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. In: Proceedings of ITCS Conference, pp. 309–325 (2012)

    Google Scholar 

  26. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Proceedings CRYPTO Conference, pp. 75–92 (2013)

    Google Scholar 

  27. Immanuel, S.A., Sadrieh, A., Baumert, M., Couderc, J.P., Zareba, W., Hill, A.P., Vandenberg, J.: T-wave morphology can distinguish healthy controls from LQTS patients. Physiol. Meas. 37(9), 1456–1473 (2016)

    Article  Google Scholar 

  28. Kogge, P., Stone, H.: A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Trans. Comput. C-22, 783–791 (1973)

    Google Scholar 

  29. Bazett, H.C.: An analysis of the time-relations of the electrocardiograms. Ann. Noninvasive Electrocardiol. 2(2), 177–194 (1997)

    Article  Google Scholar 

  30. Halevi, S., Shoup, V.: Algorithms in HElib. In: Proceedings CRYPTO Conference, pp. 554–571 (2014)

    Google Scholar 

  31. IBM Bluemix Cloud Infrastructure. https://www.ibm.com/cloud-computing/bluemix

  32. IBM Cloudant Storage Service. https://cloudant.com

  33. IBM OpenWhisk Service. https://developer.ibm.com/openwhisk

  34. Polar H7 Sensor. https://www.polar.com/en/products/accessories

  35. Park, S.-W., Lee, I.-Y.: Anonymous authentication scheme based on NTRU for the protection of payment information in NFC mobile environment. J. Inf. Process. Syst. 9(3), 461–476 (2013)

    Article  Google Scholar 

  36. Lopez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. Cryptology ePrint Archive, Report 2013/094 (2013)

    Google Scholar 

  37. Dimitriou, T., Krontiris, I.: Privacy-respecting auctions and rewarding mechanisms in mobile crowd-sensing applications. J. Netw. Comput. Appl. 100, 24–34 (2017)

    Article  Google Scholar 

  38. Song, X., Chen, Z., Chen, L.: A multi-bit fully homomorphic encryption with shorter public key from LWE. IEEE Access 7, 50588–50594 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan Bocu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bocu, R. (2020). A Secure Distributed e-Health System for the Management of Personal Health Metrics Data. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Advanced Information Networking and Applications. AINA 2020. Advances in Intelligent Systems and Computing, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-44041-1_4

Download citation

Publish with us

Policies and ethics