Skip to main content

Cutaneous and Muscle Mechanoreceptors: Sensitivity to Mechanical Vibrations

  • Chapter
  • First Online:
Manual of Vibration Exercise and Vibration Therapy

Abstract

This chapter briefly describes the structure and functional properties of cutaneous and muscle mechanoreceptors together with a description of their sensitivity to mechanical vibrations. The chapter also includes an overview of different works that can be conducted using a vibration tool, whether in fundamental research, to study these sensory modalities, or in clinical research, such as to reeducate movement or reduce pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knibestol M, Vallbo AB. Single unit analysis of mechanoreceptor activity from the human glabrous skin. Acta Physiol Scand. 1970;80(2):178–95.

    Article  CAS  PubMed  Google Scholar 

  2. Nolano M, Provitera V, Crisci C, Stancanelli A, Wendelschafer-Crabb G, Kennedy WR, et al. Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol. 2003;54(2):197–205.

    Article  PubMed  Google Scholar 

  3. Vallbo AB, Olsson KA, Westberg KG, Clark FJ. Microstimulation of single tactile afferents from the human hand. Sensory attributes related to unit type and properties of receptive fields. Brain. 1984;107(Pt 3):727–49.

    Article  PubMed  Google Scholar 

  4. Weber AI, Saal HP, Lieber JD, Cheng JW, Manfredi LR, Dammann JF 3rd, et al. Spatial and temporal codes mediate the tactile perception of natural textures. Proc Natl Acad Sci U S A. 2013;110(42):17107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vega JA, Garcia-Suarez O, Montano JA, Pardo B, Cobo JM. The Meissner and Pacinian sensory corpuscles revisited new data from the last decade. Microsc Res Tech. 2009;72(4):299–309.

    Article  PubMed  Google Scholar 

  6. Johansson RS. Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. J Physiol. 1978;281:101–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brisben AJ, Hsiao SS, Johnson KO. Detection of vibration transmitted through an object grasped in the hand. J Neurophysiol. 1999;81(4):1548–58.

    Article  CAS  PubMed  Google Scholar 

  8. Fleming MS, Luo W. The anatomy, function, and development of mammalian Abeta low-threshold mechanoreceptors. Front Biol (Beijing). 2013;8(4). https://doi.org/10.1007/s11515-013-1271-1.

    Article  CAS  Google Scholar 

  9. Vega-Bermudez F, Johnson KO. SA1 and RA receptive fields, response variability, and population responses mapped with a probe array. J Neurophysiol. 1999;81(6):2701–10.

    Article  CAS  PubMed  Google Scholar 

  10. Edin B. Cutaneous afferents provide information about knee joint movements in humans. J Physiol. 2001;531(Pt 1):289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aimonetti JM, Roll JP, Hospod V, Ribot-Ciscar E. Ankle joint movements are encoded by both cutaneous and muscle afferents in humans. Exp Brain Res. 2012;221(2):167–76.

    Article  PubMed  Google Scholar 

  12. Hagbarth KE, Vallbo AB. Pulse and respiratory grouping of sympathetic impulses in human muscle-nerves. Acta Physiol Scand. 1968;74(1):96–108.

    Article  CAS  PubMed  Google Scholar 

  13. Bergenheim M, Roll JP, Ribot-Ciscar E. Microneurography in humans. In: Windhorst U, Johansson H, editors. Modern techniques in neuroscience research. Berlin Heidelberg, New York: Springer; 1999. p. 801–19.

    Google Scholar 

  14. Ribot-Ciscar E, Vedel JP, Roll JP. Vibration sensitivity of slowly and rapidly adapting cutaneous mechanoreceptors in the human foot and leg. Neurosci Lett. 1989;104(1–2):130–5.

    Article  CAS  PubMed  Google Scholar 

  15. Roll JP, Vedel JP. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res. 1982;47(2):177–90.

    Article  CAS  PubMed  Google Scholar 

  16. Ribot-Ciscar E, Roll JP, Tardy-Gervet MF, Harlay F. Alteration of human cutaneous afferent discharges as the result of long-lasting vibration. J Appl Physiol (1985). 1996;80(5):1708–15.

    Article  CAS  Google Scholar 

  17. Matthews PBC. Mammalian muscle receptors and their central action. London: Arnold; 1972.

    Google Scholar 

  18. Hulliger M. The mammalian muscle spindle and its central control. Rev Physiol Biochem Pharmacol. 1984;101:1–110.

    CAS  PubMed  Google Scholar 

  19. Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by tendon vibration in man: a microneurographic study. Exp Brain Res. 1989;76(1):213–22.

    Article  CAS  PubMed  Google Scholar 

  20. Bergenheim M, Ribot-Ciscar E, Roll JP. Proprioceptive population coding of two-dimensional limb movements in humans: I. Muscle spindle feedback during spatially oriented movements. Exp Brain Res. 2000;134(3):301–10.

    Article  CAS  PubMed  Google Scholar 

  21. Ribot-Ciscar E, Bergenheim M, Albert F, Roll JP. Proprioceptive population coding of limb position in humans. Exp Brain Res. 2003;149(4):512–9.

    Article  PubMed  Google Scholar 

  22. Ribot-Ciscar E, Bergenheim M, Roll JP. The preferred sensory direction of muscle spindle primary endings influences the velocity coding of two-dimensional limb movements in humans. Exp Brain Res. 2002;145(4):429–36.

    Article  PubMed  Google Scholar 

  23. Roll JP, Albert F, Ribot-Ciscar E, Bergenheim M. “Proprioceptive signature” of cursive writing in humans: a multi-population coding. Exp Brain Res. 2004;157(3):359–68.

    Article  PubMed  Google Scholar 

  24. Roll JP, Bergenheim M, Ribot-Ciscar E. Proprioceptive population coding of two-dimensional limb movements in humans: II. Muscle-spindle feedback during “drawing-like” movements. Exp Brain Res. 2000;134(3):311–21.

    Article  CAS  PubMed  Google Scholar 

  25. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci. 1982;2(11):1527–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vallbo AB. Human muscle spindle discharge during isometric voluntary contractions. Amplitude relations between spindle frequency and torque. Acta Physiol Scand. 1974;90(2):319–36.

    Article  CAS  PubMed  Google Scholar 

  27. Vallbo AB, Hagbarth KE, Torebjork HE, Wallin BG. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979;59(4):919–57.

    Article  CAS  PubMed  Google Scholar 

  28. Prochazka A. Proprioceptive feedback and movement regulation. In: Rowell L, Sheperd JT, editors. Handbook of physiology Section 12 Exercise: regulation and integration of multiple systems. New York: American Physiological Society; 1996. p. 89–127.

    Google Scholar 

  29. Hospod V, Aimonetti JM, Roll JP, Ribot-Ciscar E. Changes in human muscle spindle sensitivity during a proprioceptive attention task. J Neurosci. 2007;27(19):5172–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ribot-Ciscar E, Hospod V, Roll JP, Aimonetti JM. Fusimotor drive may adjust muscle spindle feedback to task requirements in humans. J Neurophysiol. 2009;101(2):633–40.

    Article  PubMed  Google Scholar 

  31. Dimitriou M. Enhanced muscle afferent signals during motor learning in humans. Curr Biol. 2016;26(8):1062–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ackerley R, Aimonetti JM, Ribot-Ciscar E. Emotions alter muscle proprioceptive coding of movements in humans. Sci Rep. 2017;7(1):8465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Samain-Aupic L, Ackerley R, Aimonetti JM, Ribot-Ciscar E. Emotions can alter kinesthetic acuity. Neurosci Lett. 2018;694:99–103.

    Article  PubMed  CAS  Google Scholar 

  34. Burke D, Hagbarth KE, Lofstedt L, Wallin BG. The responses of human muscle spindle endings to vibration during isometric contraction. J Physiol. 1976;261(3):695–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burke D, Hagbarth KE, Lofstedt L, Wallin BG. The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol. 1976;261(3):673–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fallon JB, Macefield VG. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve. 2007;36(1):21–9.

    Article  PubMed  Google Scholar 

  37. Ribot-Ciscar E, Rossi-Durand C, Roll JP. Muscle spindle activity following muscle tendon vibration in man. Neurosci Lett. 1998;258(3):147–50.

    Article  CAS  PubMed  Google Scholar 

  38. Jami L. Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev. 1992;72(3):623–66.

    Article  CAS  PubMed  Google Scholar 

  39. Goodwin GM, McCloskey DI, Matthews PB. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain. 1972;95(4):705–48.

    Article  CAS  PubMed  Google Scholar 

  40. Roll JP, Albert F, Thyrion C, Ribot-Ciscar E, Bergenheim M, Mattei B. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration. J Neurophysiol. 2009;101(2):816–23.

    Article  PubMed  Google Scholar 

  41. Albert F, Bergenheim M, Ribot-Ciscar E, Roll JP. The Ia afferent feedback of a given movement evokes the illusion of the same movement when returned to the subject via muscle tendon vibration. Exp Brain Res. 2006;172:163–74.

    Article  PubMed  Google Scholar 

  42. Calvin-Figuiere S, Romaiguere P, Gilhodes JC, Roll JP. Antagonist motor responses correlate with kinesthetic illusions induced by tendon vibration. Exp Brain Res. 1999;124(3):342–50.

    Article  CAS  PubMed  Google Scholar 

  43. Calvin-Figuiere S, Romaiguere P, Roll JP. Relations between the directions of vibration-induced kinesthetic illusions and the pattern of activation of antagonist muscles. Brain Res. 2000;881(2):128–38.

    Article  CAS  PubMed  Google Scholar 

  44. Naito E, Roland PE, Ehrsson HH. I feel my hand moving: a new role of the primary motor cortex in somatic perception of limb movement. Neuron. 2002;36(5):979–88.

    Article  CAS  PubMed  Google Scholar 

  45. Romaiguere P, Anton JL, Roth M, Casini L, Roll JP. Motor and parietal cortical areas both underlie kinaesthesia. Cogn Brain Res. 2003;16(1):74–82.

    Article  Google Scholar 

  46. Roll R, Kavounoudias A, Albert F, Legre R, Gay A, Fabre B, et al. Illusory movements prevent cortical disruption caused by immobilization. NeuroImage. 2012;62(1):510–9.

    Article  CAS  PubMed  Google Scholar 

  47. Cordo P, Gurfinkel VS, Bevan L, Kerr GK. Proprioceptive consequences of tendon vibration during movement. J Neurophysiol. 1995;74(4):1675–88.

    Article  CAS  PubMed  Google Scholar 

  48. Inglis JT, Frank JS. The effect of agonist/antagonist muscle vibration on human position sense. Exp Brain Res. 1990;81(3):573–80.

    Article  CAS  PubMed  Google Scholar 

  49. Inglis JT, Frank JS, Inglis B. The effect of muscle vibration on human position sense during movements controlled by lengthening muscle contraction. Exp Brain Res. 1991;84(3):631–4.

    Article  CAS  PubMed  Google Scholar 

  50. Redon C, Hay L, Velay JL. Proprioceptive control of goal-directed movements in man, studied by means of vibratory muscle tendon stimulation. J Mot Behav. 1991;23(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  51. Goble DJ, Coxon JP, Van Impe A, Geurts M, Doumas M, Wenderoth N, et al. Brain activity during ankle proprioceptive stimulation predicts balance performance in young and older adults. J Neurosci. 2011;31(45):16344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kavounoudias A, Roll R, Roll JP. Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. J Physiol. 2001;532(Pt 3):869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sorensen KL, Hollands MA, Patla E. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion. Exp Brain Res. 2002;143(1):24–34.

    Article  CAS  PubMed  Google Scholar 

  54. Verschueren SM, Swinnen SP, Desloovere K, Duysens J. Effects of tendon vibration on the spatiotemporal characteristics of human locomotion. Exp Brain Res. 2002;143(2):231–9.

    Article  PubMed  Google Scholar 

  55. Verschueren SM, Swinnen SP, Desloovere K, Duysens J. Vibration-induced changes in EMG during human locomotion. J Neurophysiol. 2003;89(3):1299–307.

    Article  PubMed  Google Scholar 

  56. Blanchard C, Roll R, Roll JP, Kavounoudias A. Combined contribution of tactile and proprioceptive feedback to hand movement perception. Brain Res. 2011;1382:219–29.

    Article  CAS  PubMed  Google Scholar 

  57. Blanchard C, Roll R, Roll JP, Kavounoudias A. Differential contributions of vision, touch and muscle proprioception to the coding of hand movements. PLoS One. 2013;8(4):e62475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guerraz M, Provost S, Narison R, Brugnon A, Virolle S, Bresciani JP. Integration of visual and proprioceptive afferents in kinesthesia. Neuroscience. 2012;223:258–68.

    Article  CAS  PubMed  Google Scholar 

  59. Kabbaligere R, Lee BC, Layne CS. Balancing sensory inputs: sensory reweighting of ankle proprioception and vision during a bipedal posture task. Gait Posture. 2017;52:244–50.

    Article  PubMed  Google Scholar 

  60. Cormie P, Deane RS, Triplett NT, McBride JM. Acute effects of whole-body vibration on muscle activity, strength, and power. J Strength Cond Res. 2006;20(2):257–61.

    PubMed  Google Scholar 

  61. Paoloni M, Mangone M, Scettri P, Procaccianti R, Cometa A, Santilli V. Segmental muscle vibration improves walking in chronic stroke patients with foot drop: a randomized controlled trial. Neurorehabil Neural Repair. 2010;24(3):254–62.

    Article  PubMed  Google Scholar 

  62. Roelants M, Verschueren SM, Delecluse C, Levin O, Stijnen V. Whole-body-vibration-induced increase in leg muscle activity during different squat exercises. J Strength Cond Res. 2006;20(1):124–9.

    PubMed  Google Scholar 

  63. Ronnestad BR. Comparing the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men. J Strength Cond Res. 2004;18(4):839–45.

    PubMed  Google Scholar 

  64. Ribot-Ciscar E, Butler JE, Thomas CK. Facilitation of triceps brachii muscle contraction by tendon vibration after chronic cervical spinal cord injury. J Appl Physiol. 2003;94(6):2358–67.

    Article  PubMed  Google Scholar 

  65. Rickards C, Cody FW. Proprioceptive control of wrist movements in Parkinson’s disease. Reduced muscle vibration-induced errors. Brain. 1997;120(Pt 6):977–90.

    Article  PubMed  Google Scholar 

  66. Rosenkranz K, Altenmuller E, Siggelkow S, Dengler R. Alteration of sensorimotor integration in musician’s cramp: impaired focusing of proprioception. Clin Neurophysiol. 2000;111(11):2040–5.

    Article  CAS  PubMed  Google Scholar 

  67. van Deursen RW, Sanchez MM, Ulbrecht JS, Cavanagh PR. The role of muscle spindles in ankle movement perception in human subjects with diabetic neuropathy. Exp Brain Res. 1998;120(1):1–8.

    Article  PubMed  Google Scholar 

  68. Ribot-Ciscar E, Trefouret S, Aimonetti JM, Attarian S, Pouget J, Roll JP. Is muscle spindle proprioceptive function spared in muscular dystrophies? A muscle tendon vibration study. Muscle Nerve. 2004;29(6):861–6.

    Article  PubMed  Google Scholar 

  69. Ribot-Ciscar E, Aimonetti JM, Azulay JP. Sensory training with vibration-induced kinesthetic illusions improves proprioceptive integration in patients with Parkinson’s disease. J Neurol Sci. 2017;383:161–5.

    Article  PubMed  Google Scholar 

  70. Ribot-Ciscar E, Milhe-De Bovis V, Aimonetti JM, Lapeyssonnie B, Campana-Salort E, Pouget J, et al. Functional impact of vibratory proprioceptive assistance in patients with facioscapulohumeral muscular dystrophy. Muscle Nerve. 2015;52(5):780–7.

    Article  PubMed  Google Scholar 

  71. Rosenkranz K, Butler K, Williamon A, Rothwell JC. Regaining motor control in musician’s dystonia by restoring sensorimotor organization. J Neurosci. 2009;29(46):14627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. van Nes IJ, Geurts AC, Hendricks HT, Duysens J. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: preliminary evidence. Am J Phys Med Rehabil. 2004;83(11):867–73.

    Article  PubMed  Google Scholar 

  73. Moss F, Ward LM, Sannita WG. Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol. 2004;115(2):267–81.

    Article  PubMed  Google Scholar 

  74. Collins JJ, Imhoff TT, Grigg P. Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J Neurophysiol. 1996;76(1):642–5.

    Article  CAS  PubMed  Google Scholar 

  75. Collins JJ, Imhoff TT, Grigg P. Noise-mediated enhancements and decrements in human tactile sensation. Phys Rev E. 1997;56(1):923–6.

    Article  CAS  Google Scholar 

  76. Gravelle DC, Laughton CA, Dhruv NT, Katdare KD, Niemi JB, Lipsitz LA, et al. Noise-enhanced balance control in older adults. Neuroreport. 2002;13(15):1853–6.

    Article  PubMed  Google Scholar 

  77. Liu W, Lipsitz LA, Montero-Odasso M, Bean J, Kerrigan DC, Collins JJ. Noise-enhanced vibrotactile sensitivity in older adults, patients with stroke, and patients with diabetic neuropathy. Arch Phys Med Rehabil. 2002;83(2):171–6.

    Article  PubMed  Google Scholar 

  78. Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ. Vibrating insoles and balance control in elderly people. Lancet. 2003;362(9390):1123–4.

    Article  PubMed  Google Scholar 

  79. Priplata AA, Patritti BL, Niemi JB, Hughes R, Gravelle DC, Lipsitz LA, et al. Noise-enhanced balance control in patients with diabetes and patients with stroke. Ann Neurol. 2006;59(1):4–12.

    Article  PubMed  Google Scholar 

  80. Cordo P, Inglis JT, Verschueren S, Collins JJ, Merfeld DM, Rosenblum S, et al. Noise in human muscle spindles. Nature. 1996;383(6603):769–70.

    Article  CAS  PubMed  Google Scholar 

  81. Ribot-Ciscar E, Hospod V, Aimonetti JM. Noise-enhanced kinaesthesia: a psychophysical and microneurographic study. Exp Brain Res. 2013;228(4):503–11.

    Article  CAS  PubMed  Google Scholar 

  82. Borel L, Ribot-Ciscar E. Improving postural control by applying mechanical noise to ankle muscle tendons. Exp Brain Res. 2016;234(8):2305–14.

    Article  PubMed  Google Scholar 

  83. Sacco CC, Gaffney EM, Dean JC. Effects of white noise Achilles tendon vibration on quiet standing and active postural positioning. J Appl Biomech. 2018;34(2):151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mendez-Balbuena I, Manjarrez E, Schulte-Monting J, Huethe F, Tapia JA, Hepp-Reymond MC, et al. Improved sensorimotor performance via stochastic resonance. J Neurosci. 2012;32(36):12612–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lundeberg T. The pain suppressive effect of vibratory stimulation and transcutaneous electrical nerve stimulation (TENS) as compared to aspirin. Brain Res. 1984;294(2):201–9.

    Article  CAS  PubMed  Google Scholar 

  86. Moore SR, Shurman J. Combined neuromuscular electrical stimulation and transcutaneous electrical nerve stimulation for treatment of chronic back pain: a double-blind, repeated measures comparison. Arch Phys Med Rehabil. 1997;78(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  87. Guieu R, Tardy-Gervet MF, Blin O, Pouget J. Pain relief achieved by transcutaneous electrical nerve stimulation and/or vibratory stimulation in a case of painful legs and moving toes. Pain. 1990;42(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  88. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965;150(3699):971–9.

    Article  CAS  PubMed  Google Scholar 

  89. Guieu R, Tardy-Gervet MF, Roll JP. Analgesic effects of vibration and transcutaneous electrical nerve stimulation applied separately and simultaneously to patients with chronic pain. Can J Neurol Sci. 1991;18(2):113–9.

    Article  CAS  PubMed  Google Scholar 

  90. Tardy-Gervet MF, Guieu R, Ribot-Ciscar E, Roll JP. Transcutaneous mechanical vibrations: analgesic effect and antinociceptive mechanisms. Rev Neurol (Paris). 1993;149(3):177–85.

    CAS  Google Scholar 

  91. Gay A, Aimonetti JM, Roll JP, Ribot-Ciscar E. Kinesthetic illusions attenuate experimental muscle pain, as do muscle and cutaneous stimulation. Brain Res. 1615;2015:148–56.

    Google Scholar 

  92. Casini L, Romaiguere P, Ducorps A, Schwartz D, Anton JL, Roll JP. Cortical correlates of illusory hand movement perception in humans: a MEG study. Brain Res. 2006;1121(1):200–6.

    Article  CAS  PubMed  Google Scholar 

  93. Naito E, Ehrsson HH. Kinesthetic illusion of wrist movement activates motor-related areas. Neuroreport. 2001;12(17):3805–9.

    Article  CAS  PubMed  Google Scholar 

  94. Flor H, Diers M. Sensorimotor training and cortical reorganization. NeuroRehabilitation. 2009;25(1):19–27.

    Article  PubMed  Google Scholar 

  95. Gay A, Parratte S, Salazard B, Guinard D, Pham T, Legre R, et al. Proprioceptive feedback enhancement induced by vibratory stimulation in complex regional pain syndrome type I: an open comparative pilot study in 11 patients. Joint Bone Spine. 2007;74(5):461–6.

    Article  PubMed  Google Scholar 

  96. Weerakkody NS, Whitehead NP, Canny BJ, Gregory JE, Proske U. Large-fiber mechanoreceptors contribute to muscle soreness after eccentric exercise. J Pain. 2001;2(4):209–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Ribot-Ciscar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribot-Ciscar, E. (2020). Cutaneous and Muscle Mechanoreceptors: Sensitivity to Mechanical Vibrations. In: Rittweger, J. (eds) Manual of Vibration Exercise and Vibration Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-43985-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43985-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43984-2

  • Online ISBN: 978-3-030-43985-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics