Skip to main content

The Biology of Vibration

  • Chapter
  • First Online:
Manual of Vibration Exercise and Vibration Therapy
  • 1080 Accesses

Abstract

Vibrations are all around us, but often not consciously perceived by humans in contrast to many other species. What can we learn from the detection and use of vibrations by other species? In this chapter, I set out to illustrate that vibrations are used for several functions in nature, and that the human capacity to detect and utilize vibrations can be traced far beyond our early mammalian ancestors. The existence of a multitude of sensory organs responding to vibrations, with partly overlapping sensitivity to frequencies and varying adaptation speeds, already suggests that somewhere during the evolution of mammals vibrations were important for the interaction between the host and the environment. In addition, it became a crucial modality enabling interactions between individuals (either of the same species or between different species). Vibrations present in our current society may influence our well-being and behavior. Knowledge of the natural origins of vibration detection and their functions can increase our awareness of vibrations, and how it can be employed. This awareness strongly links to the field of whole body vibration, where vibrations are primarily used as an exercise modality. In my opinion, this awareness could contribute to enhance the usefulness and effectiveness of whole body vibration therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson SN, Campsie P, Childs PG, Madsen F, Donnelly H, Henriquez FL, Mackay WG, Salmerón-Sánchez M, Tsimbouri MP, Williams C, Dalby MJ, Reid S. Control of cell behaviour through nanovibrational stimulation: nanokicking. Philos Trans A Math Phys Eng Sci. 2018;376(2120):20170290. https://doi.org/10.1098/rsta.2017.0290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haxel JH, Dziak RP, Matsumoto H. Observations of shallow water marine ambient sound: the low frequency underwater soundscape of the central Oregon coast. J Acoust Soc Am. 2013;133:2586–96. https://doi.org/10.1121/1.4796132.

    Article  PubMed  Google Scholar 

  3. Dubrovsky NA, Frolov VM. Thunderstorm as a source of sounds in the ocean. In: Buckingham MJ, Potter JR, editors. Sea surface sound ’94. Lake Arrowhead: University of California; 1996. p. 112–24.

    Chapter  Google Scholar 

  4. Casas J, Bacher S, Tautz J, Meyhöfer R, Pierre D. Leaf vibrations and air movements in a leafminer-parasitoid system. Biol Control. 1998;11:147–53.

    Article  Google Scholar 

  5. Darbois Texier B, Ibarra A, Melo F. Low-resistive vibratory penetration in granular media. PLoS One. 2017;12(4):e0175412. https://doi.org/10.1371/journal.pone.0175412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mortimer B. Biotremology: do physical constraints limit the propagation of vibrational information? Animal Behaviour. 2017;130:165–74.

    Article  Google Scholar 

  7. Endler JA. The emerging field of tremology. In: Crofort RB, Gogala M, PSM H, Wessel A, editors. Studying vibrational communication. Heidelberg: Springer; 2014. p. vii–x.

    Google Scholar 

  8. Hill PS, Wessel A. Biotremology. Curr Biol. 2016;26:R187–91. https://doi.org/10.1016/j.cub.2016.01.054.

    Article  CAS  PubMed  Google Scholar 

  9. Killich T, Plath PJ, Wei X, Bultmann H, Rensing L, Vicker MG. The locomotion, shape and pseudopodial dynamics of unstimulated dictyostelium cells are not random. J Cell Sci. 1993;106:1005–10013.

    PubMed  Google Scholar 

  10. Safavi AS, Rouhi G, Haghighipour N, Bagheri F, Eslaminejad MB, Sayahpour FA. Efficacy of mechanical vibration in regulating mesenchymal stem cells gene expression. In Vitro Cell Dev Biol Anim. 2019;55(5):387–94. https://doi.org/10.1007/s11626-019-00340-9.

    Article  CAS  PubMed  Google Scholar 

  11. Beckingham LJ, Todorovic M, Tello Velasquez J, Vial ML, Chen M, Ekberg JAK, St John JA. Three-dimensional cell culture can be regulated by vibration: low-frequency vibration increases the size of olfactory ensheathing cell spheroids. J Biol Eng. 2019;13:41. https://doi.org/10.1186/s13036-019-0176-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hill PS. Vibration and animal communication: a review. Am Zool. 2001;41:1135–42.

    Google Scholar 

  13. Hill PS. How do animals use substrate-borne vibrations as an information source? Naturwissenschaften. 2009;96:1355–71. https://doi.org/10.1007/s00114-009-0588-8.

    Article  CAS  PubMed  Google Scholar 

  14. Mariette MM, Buchana KL. Good vibrations in the nest. Nat Ecol Evol. 2019;3(8):1144–5. https://doi.org/10.1038/s41559-019-0955-6.

    Article  PubMed  Google Scholar 

  15. Åžeker E. Bacterial vibrations. Sci Transl Med. 2013;5(196):196ec126. https://doi.org/10.1126/scitranslmed.3007046.

    Article  Google Scholar 

  16. Zhadan PM. Directional sensitivity of the Japanese scallop Mizuhopecten yessoensis and Swift scallop Chlamys swifti to water-borne vibrations. Russ J Mar Biol. 2005;31:28–35.

    Article  Google Scholar 

  17. Charifi M, Sow M, Ciret P, Benomar S, Massabuau JC. The sense of hearing in the Pacific oyster, Magallana gigas. PLoS One. 2017;12:e0185353. https://doi.org/10.1371/journal.pone.0185353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coombs S, Gorner P, Munz H. The mechanosensory lateral line: neurobiology and evolution. New York: Springer; 1989.

    Book  Google Scholar 

  19. Kasumyan AO. Sounds and sound production in fishes. J Ichthyol. 2008;48:981–1030.

    Article  Google Scholar 

  20. Fine ML. Mismatch between sound production and hearing in the Oyster Toadfish. In: Tavolga WN, Popper AN, Fay RR, editors. Hearing and sound communication in fishes. New York: Springer; 1981. p. 257–63.

    Chapter  Google Scholar 

  21. Cokl A, Virant-Doberlet M. Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol. 2003;48:29–50.

    Article  CAS  Google Scholar 

  22. Hunt JH, Richard F-J. Intracolony vibroacoustic communication in social insects. Insect Soc. 2013;60:403–17.

    Article  Google Scholar 

  23. Siehler O, Bloch, G. Colony volatiles and substrate-borne vibrations entrain circadian rhythms and are potential mediators of social synchronization in honey bee colonies. 2019. www.biorxiv.org, https://doi.org/10.1101/850891

  24. Vallejo-Marin M. Buzz pollination: studying bee vibrations on flowers. New Phytol. 2019;224:1068–74.

    Article  Google Scholar 

  25. Shaw S. Detection of airborne sound by a cockroach ‘vibration detector’: a possible missing link in insect auditory evolution. J Exp Biol. 1994;193:13–47.

    CAS  PubMed  Google Scholar 

  26. Kuszewska K, Miler K, Filipiak M, Woyciechowski M. Sedentary antlion larbae (Neuroptera: Myrmeleontidae) use vibrational cues to modify their foraging strategies. Anim Cogn. 2016;19:1037–41. https://doi.org/10.1007/s10071-016-1000-7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Michelsen A, Nocke H. Biophysical aspects of sound communication in insects. Adv Insect Physiol. 1974;10:247–96.

    Article  Google Scholar 

  28. Hayashi Y, Yoshimura J, Roff DA, Kumita T, Shimizu A. Four types of vibration behaviors in a mole cricket. PLoS One. 2018;13(10):e0204628. https://doi.org/10.1371/journal.pone.0204628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schafer RM. The soundscape: our sonic environment and the tuning of the world. Alfred Knopf: Rochester Vt, Destiny Books; 1977.

    Google Scholar 

  30. Klauer G, Burda H, Nevo E. Adaptive differentiations of the skin of the head in a subterranean rodent, Spalax ehrenbergi. J Morphol. 1997;233:53–66.

    Article  CAS  Google Scholar 

  31. Nevo E, Heth G, Pratt H. Seismic communication in a blind subterranean mammal: a major somatosensory mechanism in adaptive evolution underground. Proc Natl Acad Sci. 1961;88:1256–60.

    Article  Google Scholar 

  32. Nevo E. Observations on Israeli populations of the mole rat, Spalax ehrenbergi Nehring 1898. Mammalia. 1961;25:127–44.

    Article  Google Scholar 

  33. Catania KC. A nose that looks like a hand and acts like an eye: the unusual mechanosensory system of the star-nosed mole. J Comp Physiol A. 1999;185:367–72.

    Article  CAS  Google Scholar 

  34. Gunther RH, O’Connell-Rodwell CE, Klemperer SL. Seismic waves from elephant vocalization: a possible communication mode? Geophys Res Lett. 2004;31(L11602):1–4.

    Google Scholar 

  35. Mortimer B. A spider’s vibration landscape: adaptations to promote vibrational information transfer in orb webs. Integr Comp Biol. 2019;59(6):1636–45. https://doi.org/10.1093/icb/icz043.

    Article  CAS  PubMed  Google Scholar 

  36. Caldwell MS. Interactions between airborne sound and substrate vibration in animal communication. In: Studying vibrational communication, animal signals and communication, vol. 3. Berlin Heidelberg: Springer-Verlag; 2014. https://doi.org/10.1007/978-3-662-43607-3_6.

    Chapter  Google Scholar 

  37. Cocroft RB, Rodriguez RL. The behavioral ecology of insect vibrational communication. Bioscience. 2005;55:323–34.

    Article  Google Scholar 

  38. Bennet-Clark HC. Size and scale effect as constraints in insect sound communication. Phil Trans R Soc Lond B. 1998;353:407–19.

    Article  Google Scholar 

  39. Ryan MA, Cokl A, Walter GH. Differences in vibratory sound communication between a Slovanian and an Australian population of Nezara viridula (L.) (Heteroptera: Pentatomidae). Behav Processes. 1996;36:183–93.

    Article  CAS  Google Scholar 

  40. Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V. Exploitation of insect vibrational signals reveals a new method for pest management. PLoS One. 2012;7(3):e32954.

    Article  CAS  Google Scholar 

  41. Nieri R, Mazzoni V. Vibrational mating disruption of Empoasca vitis by natural or artificial disturbance noises. Pets Manag Sci. 2019;75:1065–73. https://doi.org/10.1002/ps.5216.

    Article  CAS  Google Scholar 

  42. Mankin RW, Anderson JB, Mizrach A, Epsky ND, Shuman D, Heath RR, Mazor M, Hetzroni A, Grinshpun J, Taylor PW, Garrett SL. Broadcasts of wing-fanning vibrations recorded from calling Ceratitis capitata (Diptera: Tephritidae) increase captures of females in traps. J Econ Entomol. 2004;97:1299–309.

    Article  CAS  Google Scholar 

  43. Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni V. Manipulating behaviour with substrate-borne vibrations—potential for insect pest control. Pest Manag Sci. 2015;71:15–23.

    Article  CAS  Google Scholar 

  44. Mankin RW, Hodges RD, Nagle HT, Schal C, Pereira RM, Koehler PG. Acoustic indicators for targeted detection of stored product and urban insect pests by inexpensive infrared, acoustic, and vibrational detection of movement. J Econ Entomol. 2010;103:1636–46.

    Article  CAS  Google Scholar 

  45. Pumphrey RJ. Hearing. Symp Soc Exp Biol. 1950;4:3–18.

    Google Scholar 

  46. Levänen S, Hamdorf D. Feeling vibrations: enhanced tactile sensitivity in congenitally deaf humans. Neurosci Lett. 2001;301:75–7.

    Article  Google Scholar 

  47. Arnason BT, Hart LA, O’Connell-Rodwell CE. The properties of geophysical fields and their effects on elephants and other animals. J Comp Psychol. 2002;116:123–32.

    Article  Google Scholar 

  48. Ekimov A, Sabatier JM. Vibration and sound signatures of human footsteps in buildings. J Acoust Soc Am. 2006;120:762–8.

    Article  Google Scholar 

  49. Faghfouri AE, Frish MB. Robust discrimination of human footsteps using seismic signals. Proceedings of the International Society for Optical Engineering. 2011. https://doi.org/10.1117/12.882726.

  50. Boerema AS, Heesterbeek M, Boersma SA, Schoemaker R, de Vries EFJ, van Heuvelen MJG, Van der Zee EA. Beneficial effects of whole body vibration on brain functions in mice and humans. Dose Response. 2018;16(4):1559325818811756. https://doi.org/10.1177/1559325818811756.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy A. van der Zee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Zee, E.A. (2020). The Biology of Vibration. In: Rittweger, J. (eds) Manual of Vibration Exercise and Vibration Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-43985-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43985-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43984-2

  • Online ISBN: 978-3-030-43985-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics