Skip to main content

Abstract

Exercise is normally associated with an increased demand for transport of oxygen, carbon dioxide and substrate, thus requiring increases in cardiac output and heart rate. Equally important as the central cardiovascular response is the direction of blood flow towards the working musculature, and the microcirculation herein.

Ample evidence indicates that the central cardiovascular demands by whole-body vibration exercise are very moderate, although cardiac output has not yet been measured during whole-body vibration (WBV). This implies that WBV is unlikely to improve aerobic fitness, but that aerobically unfit patients are likely able to perform WBV.

With regard to local blood supply and microcirculation in the working musculature, vibration exercise seems to increase blood flow in a dose-specific manner, and it may also induce a short-lasting improvement of tissue oxygenation. However, that effect persists for only approximately 1 minute. Possibly, this effect is of direct mechanical nature. The present knowledge therefore suggests that vibration exercise could have specific merit in patients with disrupted microcirculation, e.g., in diabetic patients, in particular when they have low aerobic fitness.

Darryl Cochrane is employee of the Crown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capek JM, Roy RJ. Noninvasive measurement of cardiac output using partial CO2 rebreathing. IEEE Trans Biomed Eng. 1988;35(9):653–61.

    Article  CAS  Google Scholar 

  2. Boushel R, Piantadosi CA. Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand. 2000;168(4):615–22.

    Article  CAS  Google Scholar 

  3. Weber T, Wassertheurer S, Rammer M, Haiden A, Hametner B, Eber B. Wave reflections, assessed with a novel method for pulse wave separation, are associated with end-organ damage and clinical outcomes. Hypertension. 2012;60(2):534–41.

    Article  CAS  Google Scholar 

  4. Kerschan-Schindl K, Grampp S, Henk C, Resch H, Preisinger E, Fialka-Moser V, et al. Whole-body vibration exercise leads to alterations in muscle blood volume. Clin Physiol. 2001;21(3):377–82.

    Article  CAS  Google Scholar 

  5. Lythgo N, Eser P, de Groot P, Galea M. Whole-body vibration dosage alters leg blood flow. Clin Physiol Funct Imaging. 2009;29(1):53–9.

    Article  Google Scholar 

  6. Games KE, Sefton JM, Wilson AE. Whole-body vibration and blood flow and muscle oxygenation: a meta-analysis. J Athl Train. 2015;50(5):542–9.

    Article  Google Scholar 

  7. Herrero AJ, Menendez H, Gil L, Martin J, Martin T, Garcia-Lopez D, et al. Effects of whole-body vibration on blood flow and neuromuscular activity in spinal cord injury. Spinal Cord. 2011;49(4):554–9.

    Article  CAS  Google Scholar 

  8. Yarar-Fisher C, Pascoe DD, Gladden LB, Quindry JC, Hudson J, Sefton J. Acute physiological effects of whole body vibration (WBV) on central hemodynamics, muscle oxygenation and oxygen consumption in individuals with chronic spinal cord injury. Disabil Rehabil. 2014;36(2):136–45.

    Article  Google Scholar 

  9. Sanudo B, Cesar-Castillo M, Tejero S, Cordero-Arriaza FJ, Oliva-Pascual-Vaca A, Figueroa A. Effects of vibration on leg blood flow after intense exercise and its influence on subsequent exercise performance. J Strength Cond Res. 2016;30(4):1111–7.

    Article  Google Scholar 

  10. Zange JC, Molitor S, Illbruck A, Muller K, Schonau E, Kohl-Bareis M, et al. In the unloaded lower leg, vibration extrudes venous blood out of the calf muscles probably by direct acceleration and without arterial vasodilation. Eur J Appl Physiol. 2014;114(5):1005–12.

    Article  Google Scholar 

  11. Fuller JT, Thomson RL, Howe PRC, Buckley JD. Effect of vibration on muscle perfusion: a systematic review. Clin Physiol Funct Imaging. 2013;33(1):1–10.

    Article  Google Scholar 

  12. Lohman EB, Scott PJ, Maloney-Hinds C, Betts-Schwab H, Thorpe D. The effect of whole body vibration on lower extremity skin blood flow in normal subjects. Med Sci Monit. 2007;13(2):71–6.

    Google Scholar 

  13. Hazell TJ, Thomas GWR, DeGuire JR, Lemon PWR. Vertical whole-body vibration does not increase cardiovascular stress to static semi-squat exercise. Eur J Appl Physiol. 2008;104(5):903–8.

    Article  Google Scholar 

  14. Maloney-Hinds C, Petrofsky JS, Zimmerman G, Hessinger DA. The role of nitric oxide in skin blood flow increases due to vibration in healthy adults and adults with type 2 diabetes. Diabetes Technol The. 2009;11(1):39–43.

    Article  CAS  Google Scholar 

  15. Maloney-Hinds C, Petrofsky JS, Zimmerman G. The effect of 30 Hz vs. 50 Hz passive vibration and duration of vibration on skin blood flow in the arm. Med Sci Monit. 2008;14(3):112–6.

    Google Scholar 

  16. Johnson PK, Feland JB, Johnson AW, Mack GW, Mitchell UH. Effect of whole body vibration on skin blood flow and nitric oxide production. J Diabetes Sci Technol. 2014;8(4):889–94.

    Article  CAS  Google Scholar 

  17. Cochrane DJ, Stannard SR, Sargeant T, Rittweger J. The rate of muscle temperature increase during acute whole-body vibration exercise. Eur J Appl Physiol. 2008;103(4):441–8.

    Article  CAS  Google Scholar 

  18. Otsuki T, Takanami Y, Aoi W, Kawai Y, Ichikawa H, Yoshikawa T. Arterial stiffness acutely decreases after whole-body vibration in humans. Acta Physiol. 2008;194(3):189–94.

    Article  CAS  Google Scholar 

  19. Rittweger J, Beller G, Felsenberg D. Acute physiological effects of exhaustive whole-body vibration exercise in man. Clin Physiol. 2000;20(2):134–42.

    Article  CAS  Google Scholar 

  20. Hazell TJ, Lemon PWR. Synchronous whole-body vibration increases VO2 during and following acute exercise. Eur J Appl Physiol. 2012;112(2):413–20.

    Article  Google Scholar 

  21. Liao LR, Ng GYF, Jones AYM, Pang MYC. Cardiovascular stress induced by whole-body vibration exercise in individuals with chronic stroke. Phys Ther. 2015;95(7):966–77.

    Article  Google Scholar 

  22. Licurci MDB, Fagundes AD, Arisawa EAL. Acute effects of whole body vibration on heart rate variability in elderly people. J Bodyw Mov Ther. 2018;22(3):618–21.

    Article  Google Scholar 

  23. Figueroa A, Vicil F, Sanchez-Gonzalez MA. Acute exercise with whole-body vibration decreases wave reflection and leg arterial stiffness. Am J Cardiovasc Dis. 2011;1(1):60–7.

    PubMed  PubMed Central  Google Scholar 

  24. Figueroa A, Gil R, Sanchez-Gonzalez MA. Whole-body vibration attenuates the increase in leg arterial stiffness and aortic systolic blood pressure during post-exercise muscle ischemia. Eur J Appl Physiol. 2011;111(7):1261–8.

    Article  Google Scholar 

  25. Sanudo B, Alfonso-Rosa R, del Pozo-Cruz B, del Pozo-Cruz J, Galiano D, Figueroa A. Whole body vibration training improves leg blood flow and adiposity in patients with type 2 diabetes mellitus. Eur J Appl Physiol. 2013;113(9):2245–52.

    Article  CAS  Google Scholar 

  26. Beijer A, Rosenberger A, Weber T, Zange J, May F, Schoenau E, et al. Randomized controlled study on resistive vibration exercise (EVE Study): protocol, implementation and feasibility. J Musculoskelet Neuronal Interact. 2013;13(2):147–56.

    CAS  PubMed  Google Scholar 

  27. Beijer A, Rosenberger A, Bolck B, Suhr F, Rittweger J, Bloch W. Whole-body vibrations do not elevate the angiogenic stimulus when applied during resistance exercise. PLoS One. 2013;8(11):e80143.

    Article  Google Scholar 

  28. Beijer A, Degens H, Weber T, Rosenberger A, Gehlert S, Herrera F, et al. Microcirculation of skeletal muscle adapts differently to a resistive exercise intervention with and without superimposed whole-body vibrations. Clin Physiol Funct Imaging. 2015;35(6):425–35.

    Article  CAS  Google Scholar 

  29. Cakar HI, Dogan S, Kara S, Rittweger J, Rawer R, Zange J. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector. Eur J Appl Physiol. 2017;117(6):1107–17.

    Article  CAS  Google Scholar 

  30. Rittweger J, Moss AD, Colier W, Stewart C, Degens H. Muscle tissue oxygenation and VEGF in VO-matched vibration and squatting exercise. Clin Physiol Funct Imaging. 2010;30(4):269–78.

    Article  CAS  Google Scholar 

  31. Manimmanakorn N, Manimmanakorn A, Phuttharak W, Hamlin MJ. Effects of whole body vibration on glycemic indices and peripheral blood flow in type II diabetic patients. Malays J Med Sci. 2017;24(4):55–63.

    PubMed  PubMed Central  Google Scholar 

  32. Figueroa A, Kalfon R, Madzima TA, Wong A. Effects of whole-body vibration exercise training on aortic wave reflection and muscle strength in postmenopausal women with prehypertension and hypertension. J Hum Hypertens. 2014;28(2):118–22.

    Article  CAS  Google Scholar 

  33. Figueroa A, Kalfon R, Madzima TA, Wong A. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension. Menopause. 2014;21(2):131–6.

    Article  Google Scholar 

  34. Figueroa A, Gil R, Wong A, Hooshmand S, Park SY, Vicil F, et al. Whole-body vibration training reduces arterial stiffness, blood pressure and sympathovagal balance in young overweight/obese women. J Hypertens. 2012;35(6):667–72.

    Google Scholar 

  35. Lai C-L, Chen H-Y, Tseng S-Y, Liao W-C, Liu B-T, Lee M-C, et al. Effect of whole-body vibration for 3 months on arterial stiffness in the middle-aged and elderly. Clin Interv Aging. 2014;9:821–7.

    PubMed  PubMed Central  Google Scholar 

  36. Ghazalian F, Hakemi L, Pourkazemi L, Akhoond M. Effects of amplitudes of whole-body vibration training on left ventricular stroke volume and ejection fraction in healthy young men. Anatol J Cardiol. 2015;15(12):976–80.

    Article  Google Scholar 

  37. Menendez H, Ferrero C, Martin-Hernandez J, Figueroa A, Marin PJ, Herrero AJ. Chronic effects of simultaneous electromyostimulation and vibration on leg blood flow in spinal cord injury. Spinal Cord. 2016;54(12):1169–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl Cochrane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cochrane, D., Rittweger, J. (2020). Circulation Effects. In: Rittweger, J. (eds) Manual of Vibration Exercise and Vibration Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-43985-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43985-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43984-2

  • Online ISBN: 978-3-030-43985-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics