Skip to main content

The Development of Research Methods as Driving Force of Technoscience

  • Chapter
  • First Online:

Part of the book series: Sociology of the Sciences Yearbook ((SOSC,volume 30))

Abstract

The intersection of science and society is often mediated by technology. Rarely, though, the means and instruments of knowledge production acquire this role. The argument of this contribution is that in mid-twentieth century, a novel type of scientist emerged, focusing on the development of research methods and their dissemination in scientific, medical, and industrial communities. Methods development provided the axis for the interaction of academic science, instrumental technology, and governmental organization of science. Following brief sketches of the types of instruments and their functions, and a theoretical outline of the concept of method makers, the article draws on a history of the regulation of research methods in twentieth century US science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This paper draws heavily on, and is partially translated from, work first published in Reinhardt (2012). An earlier English version has appeared in the proceedings of the International Workshop on the History of Chemistry 2015 (Reinhardt 2016).

  2. 2.

    It is important to distinguish between instruments and the methods or techniques associated with them for their use. Sometimes, innovation of instruments and research into methods go hand in hand, but often they are separated activities, and executed by different communities of specialists.

  3. 3.

    But see Nevers et al. (2001).

  4. 4.

    I am thankful to Jan-Hendrik Passoth for this hint. For the history of cybernetics, see for example Hagner and Hörl (2008).

  5. 5.

    National Science Foundation (NSF), MPE Divisional Committee, Chairman Thomas K. Sherwood to Bronk and Waterman, 21 January 1957. National Archives Record Administration (NARA), RG 307, Office of the Director, General Records, 1949–63, 1960–61, Box 48, folder Division of M, P, and ES.

  6. 6.

    See also Appendix A of Roberts to Haworth, 13. August 1963, NARA, RG 307, NSF Office of the Director subject Files, MPS Chemistry folder, 307-75-051, box 3; NSF annual reports 1965, 66, 67, 72, 73.

  7. 7.

    John D. Roberts et al. to Philip Handler, 15 March 1976, Oleg Jardetzky Papers, Ad hoc Committee, folder “Notes.”

  8. 8.

    John D. Roberts, Richard N. Zare, Appendix 3, 1. July 1976, “Report on Ad hoc Panel on Cooperative Efforts and Facilities for Research in Chemistry and Biological Chemistry,” 23 October 1976, National Academy of Sciences. Oleg Jardetzky Papers, Ad hoc Committee, folder “Notes.”

  9. 9.

    Statement Oleg Jardetzky, Subcomittee on Science, Research and Technology of the Committee on Science and Technology, U.S. House of Representatives, protocol, p. 403, 26. February 1979. Oleg Jardetzky Papers, folder “Ad hoc Committee, Congressional Testimony.”

  10. 10.

    Richard J. Johns, Ernest D. Cravalho, “Final Draft. Workshops on Technology in Support of Biomedical Research,” 5. November 1981, p. 5. Oleg Jardetzky Papers, folder “Workshops on Technology in Support of Biomedical Research.”

References

  • Abelson, P.A. 1971. The Role of Scientific Instrumentation. Science 174 (4014): 1081.

    Google Scholar 

  • Agar, J. 2012. Science in the Twentieth Century and Beyond. Cambridge: Polity Press.

    Google Scholar 

  • Anonymous. 2004. Methods for Methods Sake. Nature Methods 1: 1.

    Google Scholar 

  • Baird, D. 2000. Encapsulating Knowledge: The Direct Reading Spectrometer. Foundations of Chemistry 2: 5–46.

    Google Scholar 

  • Blout, E.R., D.M. Grant, O. Jardetzky, W.D. Phillips, and K.R. Porter. 1978. Instrumentation Funding. Science 202 (4366): 381.

    Google Scholar 

  • Blume, S.S. 1992. Insight and Industry. On the Dynamics of Technological Change in Medicine. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bourdieu, P. 1998. Vom Gebrauch der Wissenschaft. Für eine klinische Soziologie des wissenschaftlichen Feldes. Konstanz: UVK Universitätsverlag.

    Google Scholar 

  • Burgdorf, K., and K. White. 1984. Academic Research Equipment in the Physical and Computer Sciences and Engineering. An Analysis of Findings from Phase I of the National Survey of Academic Research Instruments and Instrumentation Needs. Rockville: Westat Research Inc.

    Google Scholar 

  • Chiang, H.H.-H. 2009. The Laboratory Technology of Discrete Molecular Separation: The Historical Development of Gel Electrophoresis and the Material Epistemology of Biomolecular Science, 1945–1970. Journal of the History of Biology 42: 495–527.

    Google Scholar 

  • Chompalov, I., J. Genuth, and W. Shrum. 2002. The Organization of Scientific Collaborations. Research Policy 31: 749–767.

    Google Scholar 

  • Coulter, C.C. 1978. Research Instrument Sharing. Science 201 (4354): 415–420.

    Google Scholar 

  • Creager, A.N. 2002. The Life of a Virus, Tobacco Mosaic Virus as an Experimental Model, 1930–1965. Chicago: University of Chicago Press.

    Google Scholar 

  • Frost & Sullivan, Inc. 1972. The Analytical Instruments Market. New York: Frost & Sullivan.

    Google Scholar 

  • Gerontas, A. 2012. Chromatographie in chemischer Praxis vor und nach big science. In Zur Geschichte von Forschungstechnologien. Generizität – Interstitialität – Transfer, ed. K. Hentschel, 308–327. Diepholz: GNT-Verlag.

    Google Scholar 

  • Hagner, M., and E. Hörl, eds. 2008. Die Transformation des Humanen – Beiträge zur Kulturgeschichte der Kybernetik. Suhrkamp: Frankfurt am Main.

    Google Scholar 

  • Handler, P. 1970. The Physical Sciences. Report of the National Science Board Submitted to the Congress. Washington D.C.: Government Printing Office.

    Google Scholar 

  • Hentschel, K. 2002. Spectroscopy or Spectroscopies? Nuncius 17: 589–614.

    Google Scholar 

  • Hippel, E.v. 1995. The Sources of Innovation. New York: Oxford University Press.

    Google Scholar 

  • Joyce, K. 2006. From Numbers to Pictures: The Development of Magnetic Resonance Imaging and the Visual Turn in Medicine. Science as Culture 15: 1–22.

    Google Scholar 

  • Keating, P., and A. Cambrosio. 2003. Biomedical Platforms. Realigning the Normal and the Pathological in Late-Twentieth-Century Medicine. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kevles, B. 1997. Naked to the Bone: Medical Imaging in the Twentieth Century. New Brunswick: Rutgers University Press.

    Google Scholar 

  • Laszlo, P. 2002. Tools, Instruments and Concepts. The Influence of the Second Chemical Revolution. In From Classical to Modern Chemistry, ed. P.J.T. Morris, 171–187. Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Latour, B. 1987. Science in Action. How to Follow Scientists and Engineers through Society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Leydesdorff, L., and H. Etzkowitz. 1996. Emergence of a Triple Helix of University-industry-government Relations. Science and Public Policy 23: 279–286.

    Google Scholar 

  • Maienschein, J. 1993. Why Collaborate? Journal of the History of Biology 26: 167–183.

    Google Scholar 

  • Mody, C. 2011. Instrumental Community: Probe Microscopy and the Path to Nanotechnology. Cambridge, MA: MIT Press.

    Google Scholar 

  • National Research Council and Biology Council. 1956. Instrumentation in Bio-medical Research. Report of a Survey by Paul E. Klopsteg, National Academy of Sciences, National Research Council Publication 472. Washington D.C.

    Google Scholar 

  • National Science Foundation (NSF). 1957. Federal Financial Support of Physical Facilities and Major Equipment for the Conduct of Scientific Research. A Report to the Bureau of Budget. Washington D.C: National Science Foundation.

    Google Scholar 

  • Nevers, P., R. Hasse, R. Hohlfeld, and W. Zimmerli. 2001. Mediating Between Plant Science and Plant Breeding: The Role of Research Technology. In Instrumentation between science, State and Industry, ed. B. Joerges and T. Shinn, 97–118. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • November, J.A. 2012. Biomedical Computing: Digitizing Life in the United States. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Nowotny, H., P. Scott, and M. Gibbons. 2003. Mode 2’ Revisited: The New Production of Knowledge. Minerva 41: 179–194.

    Google Scholar 

  • Nye, M.-J. 1994. From Chemical Philosophy to Theoretical Chemistry. Dynamics of Matter and Dynamics of Disciplines, 1800–1950. Berkeley: University of California Press.

    Google Scholar 

  • Office of Technology Assessment. 1984. Federal Policies and the Medical Device Industry. Washington, D.C.: U.S. Congress, Office of Technology Assessment.

    Google Scholar 

  • Rabkin, Y.M. 1987. Technological Innovation in Science. The Adoption of Infrared Spectroscopy by Chemists. Isis 78: 31–54.

    Google Scholar 

  • Reinhardt, C. 2006a. ‘A Lead User of Instruments in Science. John D. Roberts and the Adaptation of Nuclear Magnetic Resonance to Organic Chemistry’, 1955–1975. Isis 97: 205–236.

    Google Scholar 

  • ———. 2006b. Shifting and Rearranging. Physical Methods and the Transformation of Modern Chemistry. Sagamore Beach: Science History Publications.

    Google Scholar 

  • ———. 2006c. Wissenstransfer durch Zentrenbildung. Physikalische Methoden in der Chemie und den Biowissenschaften. Berichte zur Wissenschaftsgeschichte 29: 224–242.

    Google Scholar 

  • ———. 2010. Zentrale einer Wissenschaft. Methoden, Hierarchie und die Organisation der chemischen Institute. In Geschichte der Universität Unter den Linden 1810–2010. Biographie einer Institution, Praxis ihrer Disziplinen, Volume 5: Transformation der Wissensordnung. Verwissenschaftlichung der Gesellschaft und Verstaatlichung der Wissenschaft, ed. R.v. Bruch and H.-E. Tenorth, 575–603. Berlin: Akademie Verlag.

    Google Scholar 

  • ———. 2011a. Expertise in Methods, Methods of Expertise. In Science in the Context of Application, Boston Studies in the Philosophy of Science 274, ed. M. Carrier and A. Nordmann, 143–159. Dordrecht: Springer.

    Google Scholar 

  • ———. 2011b. Habitus, Hierarchien und Methoden. ‘Feine Unterschiede’ zwischen Physik und Chemie. N.T.M 19: 125–146.

    Google Scholar 

  • ———. 2012. Forschungstechnologien im 20. Jahrhundert. Transfer und Transformationen. In Zur Geschichte von Forschungstechnologien. Generizität – Interstitialität – Transfer, ed. K. Hentschel, 277–307. Diepholz: GNT-Verlag.

    Google Scholar 

  • ———. 2016. Physical Methods in the Twentieth Century Between Disciplines and Cultures. In Transformation of Chemistry From the 1920s to the 1960s, ed. M. Kaji, Y. Furukawa, H. Tanaka, and Y. Kikuchi, 144–152. Tokyo: Japanese Society for the History of Chemistry.

    Google Scholar 

  • Reinhardt, C., and T. Steinhauser. 2008. Formierung einer wissenschaftlich-technischen Gemeinschaft. NMR-Spektroskopie in der Bundesrepublik Deutschland. N.T.M 16: 73–101.

    Google Scholar 

  • Rosenberg, N., A.C. Gelijns, and H. Dawkins. 1995. Sources of Medical Technology. Universities and Industry. Washington D.C.: National Academy Press.

    Google Scholar 

  • Shank, C.V. 1980. The History of Subpicosecond Optical Spectroscopy. In The Scientific Instrumentation Needs of Research Universities. A Report to the National Science Foundation, 30–31. Washington D.C: Association of American Universities.

    Google Scholar 

  • Shinn, T. 2006. New Sources of Radical Innovation. Research Technologies, Transversality, and Distributed Learning in a Post-industrial Order. In Innovation, Science, and Institutional Change, ed. J. Hage and M. Meeus, 313–333. Oxford: Oxford University Press.

    Google Scholar 

  • Shinn, T., and P. Ragouet. 2005. Controverses sur la Science. Pour une sociologie transversaliste de l’activité scientifique. Paris: Raisons d’Agir.

    Google Scholar 

  • Steinhauser, T. 2012. Zukunftsmaschinen in der Chemie. Kernmagnetische Resonanz bis 1980. Frankfurt am Main: Lang Verlag.

    Google Scholar 

  • Stine, J.K. 1992. Scientific Instrumentation as an Element of US Science Policy: National Science Foundation Support of Chemistry Instrumentation. In Invisible Connections. Instruments, Institutions, and Science, ed. R. Bud and S.E. Cozzens, 238–263. Bellingham: SPIE Optical Engineering Press.

    Google Scholar 

  • Stine, J.K., and G.A. Good. 1986. Government Funding of Scientific Instrumentation. A Review of U.S. Policy Debates Since World War II. Science, Technology and Human Values 11: 34–46.

    Google Scholar 

  • Timmermann, C., and J. Anderson, eds. 2006. Devices and Designs. Medical Technologies in Historical Perspective. Houndmills: Palgrave Macmillan.

    Google Scholar 

  • Timmermans, S., and M. Berg. 2003. The Practice of Medical Technology. Sociology of Health and Illness 25: 97–114.

    Google Scholar 

  • Trivelpiece, A. 1982. Untitled. In Revitalizing Laboratory Instrumentation. The Report of a Workshop of the Ad hoc Working Group on Scientific Instrumentation, March 12–13, 1982, ed. National Research Council, Office for Physical Sciences, 17–19. Washington D.C.: National Academy Press.

    Google Scholar 

  • U.S. Department of Commerce. 1972. Global Market Survey. Industrial and Scientific Instruments. Washington D.C.: U.S. Government Printing Office.

    Google Scholar 

  • Widmalm, S. 2006. A Machine to Work In. The Ultracentrifuge and the Modernist Ideal. In Taking Place: The Spatial Contexts of Science, Technology, and Business, ed. E. Baraldi, H. Fors, and A. Houltz, 59–82. Sagamore Beach, MA: Science History Publications.

    Google Scholar 

  • Yeo, R., and J.A. Schuster, eds. 1986. The Politics and Rhetoric of Scientific Method: Historical Studies. Dordrecht: Reidel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Reinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reinhardt, C. (2020). The Development of Research Methods as Driving Force of Technoscience. In: Maasen, S., Dickel, S., Schneider, C. (eds) TechnoScienceSociety. Sociology of the Sciences Yearbook, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-43965-1_4

Download citation

Publish with us

Policies and ethics