Skip to main content

A Survey of the Book’s Content

  • Chapter
  • First Online:
Linear Time-Invariant Systems, Behaviors and Modules

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

  • 458 Accesses

Abstract

This chapter is a detailed comment on the content of the book and a self-contained survey over larger parts of linear time-invariant systems theory and electrical engineering, on the basis of mathematical knowledge of two university years. For simplicity, we restrict ourselves here to the continuous-time case over the complex field \({\mathbb {C}}\). We present the most important methods and results of the book and refer to the chapters or theorems, where they are discussed as well as to corresponding results in the literature. This chapter contains no proof and does not assume any knowledge from other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Willems, From time series to linear system. I. Finite-dimensional linear time invariant systems. II. Exact modelling. Automatica J. IFAC, 22(5 and 6), 561–580 and 675–694 (1986)

    Google Scholar 

  2. L. Ehrenpreis, Fourier Analysis in Several Complex Variables (Wiley, New York, 1970)

    MATH  Google Scholar 

  3. B. Malgrange, Sur les systèmes différentiels à coefficients constants. In Les Équations aux Dérivées Partielles (Paris, 1962) (Editions du Centre National de la Recherche Scientifique, Paris, 1963), pp. 113–122

    Google Scholar 

  4. V.P. Palamodov, Linear Differential Operators With Constant Coefficients (Springer, New York, 1970)

    Book  Google Scholar 

  5. J.-E. Björk, Rings of Differential Operators (North-Holland Publishing, Amsterdam, 1979)

    Google Scholar 

  6. U. Oberst, Multidimensional constant linear systems. Acta Appl. Math. 20(1–2), 1–175 (1990)

    Article  MathSciNet  Google Scholar 

  7. R.E. Kalman, P.L. Falb, M.A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969)

    MATH  Google Scholar 

  8. H.H. Rosenbrock, State-Space and Multivariable Theory (Wiley, New York, 1970)

    MATH  Google Scholar 

  9. W.A. Wolovich, Linear Multivariable Systems. Applied Mathematical Sciences, vol. 11 (Springer, New York, 1974)

    Google Scholar 

  10. J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory. A Behavioral Approach, Texts in Applied Mathematics, vol. 26 (Springer, New York, 1998)

    Google Scholar 

  11. T. Kailath, Linear Systems (Prentice-Hall, Englewood Cliffs, 1980)

    MATH  Google Scholar 

  12. A.I.G. Vardulakis, Linear Multivariable Control. Algebraic Analysis and Synthesis Methods (Wiley, Chichester, 1991)

    Google Scholar 

  13. C.T. Chen, Linear System Theory and Design (Harcourt Brace College Publishers, Fort Worth, 1984)

    Google Scholar 

  14. R. Unbehauen, Elektrische Netzwerke: Eine Einführung in die Analyse (Springer, Berlin, 1987)

    Book  Google Scholar 

  15. L.P. Schmidt, G. Schaller, S. Martius, Grundlagen der Elektrotechnik 3. Netzwerke (Pearson Studium, München, 2006)

    Google Scholar 

  16. P.J. Antsaklis, A.N. Michel, Linear Systems, 2nd edn. (Birkhäuser, Boston, 2006)

    MATH  Google Scholar 

  17. D. Hinrichsen, A.J. Pritchard with the cooperation of F. Colonius, T. Damm, A. Ilchmann, B. Jacob, F. Wirth. Mathematical systems theory II. Control, Observation, Realization, and Feedback . Springer, to appear

    Google Scholar 

  18. H. Bourlès, Linear Systems (ISTE, London, 2010)

    MATH  Google Scholar 

  19. F.M. Callier, C.A. Desoer, Multivariable Feedback Systems (Springer Texts in Electrical Engineering Springer. New York, 1982)

    Google Scholar 

  20. L. Schwartz. Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Hermann, Paris, nouvelle édition, entiérement corrigée, refondue et augmentée edition, 1966

    Google Scholar 

  21. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 256 (Springer, Berlin, 1983)

    Google Scholar 

  22. M. Albach, Grundlagen der Elektrotechnik 2. Periodische und nichtperiodische Signalformen (Pearson Studium, München, 2005)

    Google Scholar 

  23. F.M. Callier, C.A. Desoer, Linear System Theory (Springer, New York, 1991)

    Book  Google Scholar 

  24. A. Kochubei, Y. Luchko, Handbook of Fractional Calculus with Applications. Vol. 1: Basic Theory, Vol. 2: Fractional Differential Equations. (De Gruyter, Berlin, 2019)

    Google Scholar 

  25. H. Bourlès, B. Marinescu, U. Oberst, Weak exponential stability of linear time-varying differential behaviors. Linear Algebra Appl. 486, 523–571 (2015)

    Article  MathSciNet  Google Scholar 

  26. U. Oberst, Anwendungen des chinesischen Restsatzes. Exp. Math. 3, 97–148 (1985)

    MathSciNet  MATH  Google Scholar 

  27. R.G. Ballas, G. Pfeifer, R. Werthschützky, Elektromechanische Systeme in der Mikrotechnik und Mechatronik (Springer, Berlin, 2009)

    Book  Google Scholar 

  28. K. Jantschek, Mechatronic Systems Design. Methods, Models, Concepts (Springer, Berlin, 2012)

    Book  Google Scholar 

  29. D.C. Karnopp, D.L. Margolis, R.C. Rosenberg, System Dynamics. Modeling, Simulation, and Control of Mechatronic Systems (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  30. R.W. Newcomb, Network Theory, The State-Space Approach (Librairie Universitaire Louvain, Leuven, 1969)

    MATH  Google Scholar 

  31. M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press Series in Signal Processing, Optimization, and Control 7 (MIT Press, Cambridge, 1985)

    Google Scholar 

  32. H. Bourlès, U. Oberst, Generalized convolution behaviors and topological algebra. Acta Appl. Math. 141, 107–148 (2016)

    Article  MathSciNet  Google Scholar 

  33. I. Blumthaler, Functional \(T\)-observers. Linear Algebra Appl. 432(6), 1560–1577 (2010)

    Article  MathSciNet  Google Scholar 

  34. I. Blumthaler, U. Oberst, Design, parametrization, and pole placement of stabilizing output feedback compensators via injective cogenerator quotient signal modules. Linear Algebra Appl. 436(5), 963–1000 (2012)

    Article  MathSciNet  Google Scholar 

  35. A. Quadrat, On a generalization of the Youla-Kučera parametrization. II. The lattice approach to MIMO systems. Math. Control Signals Systems, 18(3), 199–235 (2006)

    Google Scholar 

  36. L. Pernebo, An algebraic theory for the design of controllers for linear multivariable systems. I. Structure matrices and feedforward design. II. Feedback realizations and feedback design. IEEE Trans. Automat. Control 26(1), 171–182 and 183–194 (1981)

    Google Scholar 

  37. C.A. Desoer, M. Vidyasagar, Feedback Systems: Input-Output Properties (Academic Press, Cambridge, 1975)

    Google Scholar 

  38. K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall, Upper Saddle River, 1996)

    Google Scholar 

  39. I. Blumthaler, Stabilisation and control design by partial output feedback and by partial interconnection. Int. J. Control 85(11), 1717–1736 (2012)

    Article  MathSciNet  Google Scholar 

  40. H. Bourlès, Impulsive systems and behaviors in the theory of linear dynamical systems. Forum Math. 17(5), 781–807 (2005)

    Article  MathSciNet  Google Scholar 

  41. C. Bargetz, Impulsive solutions of differential behaviors. Master’s thesis, University of Innsbruck, 2008

    Google Scholar 

  42. D.G. Luenberger, Observing the state of a linear system. IEEE Trans. Mil. Electron. 8(2), 74–80 (1964)

    Article  Google Scholar 

  43. P.A. Fuhrmann, Observer theory. Linear Algebra Appl. 428(1), 44–136 (2008)

    Article  MathSciNet  Google Scholar 

  44. R.F. Curtain, H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory (Springer, New York, 1995)

    Book  Google Scholar 

  45. W.J. Rugh, Linear System Theory, 2nd edn. (Prentice-Hall, Upper Saddle River, 1996)

    MATH  Google Scholar 

  46. D. Hinrichsen, A.J. Pritchard, Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48 (Springer, Berlin, 2005)

    Google Scholar 

  47. S. Fröhler, U. Oberst, Continuous time-varying linear systems. Syst. Control Lett. 35(2), 97–110 (1998)

    Article  MathSciNet  Google Scholar 

  48. H. Bourlès, B. Marinescu, U. Oberst, Exponentially stable linear time-varying discrete behaviors. SIAM J. Control Optim. 53(5), 2725–2761 (2015)

    Article  MathSciNet  Google Scholar 

  49. H. Bourlès, B. Marinescu, U. Oberst, The injectivity of the canonical signal module for multidimensional linear systems of difference equations with variable coefficients. Multidimens. Syst. Signal Process. 28(1), 75–103 (2017)

    Article  MathSciNet  Google Scholar 

  50. H. Bourlès, U. Oberst, Robust stabilization of discrete-time periodic linear systems for tracking and disturbance rejection. Math. Control Signals Syst. 28(3), Art. 18 (2016)

    Google Scholar 

  51. U. Oberst, Two invariants for weak exponential stability of linear time-varying differential behaviors. Linear Algebra Appl. 504, 468–486 (2016)

    Article  MathSciNet  Google Scholar 

  52. U. Oberst, A constructive test for exponential stability of linear time-varying discrete-time systems. Appl. Algebra Eng. Comm. Comput. 28(5), 437–456 (2017)

    Article  MathSciNet  Google Scholar 

  53. J.-F. Pommaret, Partial Differential Control Theory. Vol. I. Mathematical Tools; Vol. II. Control Systems (Kluwer, Dordrecht, 2001)

    Google Scholar 

  54. E.D. Sontag, Mathematical Control Theory (Springer, New York, 1990)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Oberst .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oberst, U., Scheicher, M., Scheicher, I. (2020). A Survey of the Book’s Content. In: Linear Time-Invariant Systems, Behaviors and Modules. Differential-Algebraic Equations Forum. Springer, Cham. https://doi.org/10.1007/978-3-030-43936-1_2

Download citation

Publish with us

Policies and ethics