Skip to main content

Terrain Learning Using Time Series of Ground Unit Traversal Cost

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11995))

Abstract

In this paper, we concern learning of terrain types based on the traversal experience observed by a hexapod walking robot. The addressed problem is motivated by the navigation of unmanned ground vehicles in long-term autonomous missions in a priory unknown environments such as extraterrestrial exploration. In such deployments, the robotic vehicle needs to learn hard to traverse terrains to improve its autonomous performance and avoid possibly dangerous areas. We propose to utilize Growing Neural Gas for terrain learning to capture the robot experience with traversing the terrain and thus learn a classifier of individual terrain types. The classifier is learned using a real time-series dataset collected by a hexapod walking robot traversing various terrain types. The learned model can be utilized to predict the traversal cost of newly observed terrains to support decisions on where to navigate next.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Belter, D., Wietrzykowski, J., Skrzypczyński, P.: Employing natural terrain semantics in motion planning for a multi-legged robot. J. Intel. Rob. Syst. 93(3), 723–743 (2018). https://doi.org/10.1007/s10846-018-0865-x

    Article  Google Scholar 

  2. Brown, D., Webster, G.: Now a stationary research platform, NASA’s mars rover spirit starts a new chapter in red planet scientific studies. NASA Press Release (2010)

    Google Scholar 

  3. Faigl, J., Čížek, P.: Adaptive locomotion control of hexapod walking robot for traversing rough terrains with position feedback only. Rob. Auton. Syst. 116, 136–147 (2019). https://doi.org/10.1016/j.robot.2019.03.008

    Article  Google Scholar 

  4. Faigl, J., Prágr, M.: On unsupervised learning of traversal cost and terrain types identification using self-organizing maps. In: International Conference on Artificial Neural Networks (ICANN), pp. 654–668 (2019). https://doi.org/10.1007/978-3-030-30487-4_50

  5. Faigl, J., Prágr, M.: Incremental traversability assessment learning using growing neural gas algorithm. In: Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, pp. 166–176 (2020). https://doi.org/10.1007/978-3-030-19642-4_17

  6. Fišer, D., Faigl, J., Kulich, M.: Growing neural gas efficiently. Neurocomputing 104, 72–82 (2013). https://doi.org/10.1016/j.neucom.2012.10.004

    Article  Google Scholar 

  7. Fritzke, B.: A growing neural gas network learns topologies. In: Neural Information Processing Systems (NIPS), pp. 625–632. MIT Press (1994)

    Google Scholar 

  8. Giguere, P., Dudek, G.: Clustering sensor data for terrain identification using a windowless algorithm. In: Robotics: Science and Systems (RSS). Robotics: Science and Systems Foundation (2008). https://doi.org/10.15607/RSS.2008.IV.004

  9. Kampouraki, A., Manis, G., Nikou, C.: Heartbeat time series classification with support vector machines. IEEE Trans. Inf. Technol. Biomed. 13(4), 512–518 (2009). https://doi.org/10.1109/TITB.2008.2003323

    Article  Google Scholar 

  10. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min. Knowl. Disc. 7(4), 349–371 (2003). https://doi.org/10.1023/A:1024988512476

    Article  MathSciNet  Google Scholar 

  11. Kohonen, T.: Self-organizing Maps. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-642-56927-2

    Book  MATH  Google Scholar 

  12. Kottege, N., Parkinson, C., Moghadam, P., Elfes, A., Singh, S.P.N.: Energetics-informed hexapod gait transitions across terrains. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5140–5147 (2015). https://doi.org/10.1109/ICRA.2015.7139915

  13. Kragh, M., et al.: Object detection and terrain classification in agricultural fields using 3D lidar data. ICVS 2015. LNCS, vol. 9163, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20904-3_18

    Chapter  Google Scholar 

  14. Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform for time series classification. In: International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 289–297. ACM (2012). https://doi.org/10.1145/2339530.2339579

  15. McGhee, R.B., Frank, A.A.: On the stability properties of quadruped creeping gaits. Math. Biosci. 3, 331–351 (1968). https://doi.org/10.1016/0025-5564(68)90090-4

    Article  MATH  Google Scholar 

  16. Müller, M., et al.: Dynamic time warping. Information Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74048-3_4

    Chapter  Google Scholar 

  17. Nooralishahi, P., Seera, M., Loo, C.K.: Online semi-supervised multi-channel time series classifier based on growing neural gas. Neural Comput. Appl. 28(11), 3491–3505 (2016). https://doi.org/10.1007/s00521-016-2247-2

    Article  Google Scholar 

  18. Prágr, M., Faigl, J.: Benchmarking incremental regressors in traversal cost assessment. In: International Conference on Artificial Neural Networks (ICANN), pp. 685–697 (2019). https://doi.org/10.1007/978-3-030-30487-4_52

  19. Prágr, M., Čížek, P., Bayer, J., Faigl, J.: Online incremental learning of the terrain traversal cost in autonomous exploration. In: Robotics: Science and Systems (RSS), vol. 15 (2019). https://doi.org/10.15607/RSS.2019.XV.040

  20. Prágr, M., Čížek, P., Faigl, J.: Cost of transport estimation for legged robot based on terrain features inference from aerial scan. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1745–1750. IEEE (2018). https://doi.org/10.1109/IROS.2018.8593374

  21. Prágr, M., Čížek, P., Faigl, J.: Incremental learning of traversability cost for aerial reconnaissance support to ground units. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 412–421. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14984-0_30

    Chapter  Google Scholar 

  22. Rothrock, B., Kennedy, R., Cunningham, C., Papon, J., Heverly, M., Ono, M.: SPOC: deep learning-based terrain classification for mars rover missions. In: AIAA SPACE 2016. American Institute of Aeronautics and Astronautics (2016). https://doi.org/10.2514/6.2016-5539

  23. Shen, F., Yu, H., Sakurai, K., Hasegawa, O.: An incremental online semi-supervised active learning algorithm based on self-organizing incremental neural network. Neural Comput. Appl. 20(7), 1061–1074 (2011). https://doi.org/10.1007/s00521-010-0428-y

    Article  Google Scholar 

  24. Stelzer, A., Hirschmüller, H., Görner, M.: Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain. Int. J. Robot. Res. 31(4), 381–402 (2012). https://doi.org/10.1177/0278364911435161

    Article  Google Scholar 

  25. Wei, L., Keogh, E.: Semi-supervised time series classification. In: International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 748–753. ACM (2006). https://doi.org/10.1145/1150402.1150498

  26. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series classification using numerosity reduction. In: International Conference on Machine Learning (ICML), pp. 1033–1040. ACM (2006). https://doi.org/10.1145/1143844.1143974

  27. Zheng, Y., et al.: Time series classification using multi-channels deep convolutional neural networks. WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08010-9_33

    Chapter  Google Scholar 

Download references

Acknowledgements

The presented work has been supported under the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. The support under grant No. SGS19/176/OHK3/3T/13 to Miloš Prágr is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Prágr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prágr, M., Faigl, J. (2020). Terrain Learning Using Time Series of Ground Unit Traversal Cost. In: Mazal, J., Fagiolini, A., Vasik, P. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2019. Lecture Notes in Computer Science(), vol 11995. Springer, Cham. https://doi.org/10.1007/978-3-030-43890-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43890-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43889-0

  • Online ISBN: 978-3-030-43890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics