Skip to main content

PTH Regulation by Phosphate and miRNAs

  • Chapter
  • First Online:
Parathyroid Glands in Chronic Kidney Disease

Abstract

From far, clinical and experimental data pointed to phosphate as a modulator of the parathyroid function. However, it has resulted highly difficult to state clearly a mechanism of action for phosphate on PTH secretion . Twenty-five years ago, the physiological constraints associated with the concomitant changes in serum factors related to mineral metabolism occurring in vivo were overcame through in vitro studies with whole parathyroid glands to show a direct effect. This was shown to be post-transcriptional and then, the responsible cis and trans-acting elements were deciphered throughout the next decade. But to find out a specific phosphate sensor in the parathyroid cells has remained quite elusive. Recent data, however, appears to shed new light on the sensing mechanism, which, amazingly, seems to operate at the very core of the regulation of the parathyroid function since it concerns to the calcium sensing receptor (CaSR) itself. This chapter will cover these mechanisms whereby phosphate modulates the secretion of PTH. And it will also cope with the role of microRNAs (miRNAs), perhaps the last guest star mechanism found to regulate PTH secretion . Through interfering RNAs, specific miRNAs can exert a fine-tuning of gene expression and thus might open new therapeutic prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Portale AA, Halloran BP, Murphy MM, Morris RC Jr. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77:7–12.

    Article  CAS  Google Scholar 

  2. Portale AA, Halloran B. Morris Jr RC Physiologic regulation of serum concentration of 1,25-dihydroxyvitamin D by phosphorus in normal men. J Clin Invest. 1989;83:1494–9.

    Article  CAS  Google Scholar 

  3. Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal failure. J Clin Endocrinol Metab. 1985;61:601–6.

    Article  CAS  Google Scholar 

  4. Somerville PJ. Kayc M Evidence that resistance to the calcemic action of parathyroid hormone in rats with acute uremia is caused by phosphate retention. Kidney Int. 1979;16:552–60.

    Article  CAS  Google Scholar 

  5. Rodriguez M, Martin-Malo A, Martinez ME, Torres A, Felscnfeld AJ, Llach F. Calcemic response to parathyroid hormone in renal failure: Role of phosphorus and its effect on calcitriol. Kidney Int. 1991;40:1055–62.

    Article  CAS  Google Scholar 

  6. Lopez-Hilker S, Dusso AS, Rapp NS, Martin KJ, Slatopolsky E. Phosphorus restriction reverses hyperparathyroidism in uremia independent of changes in calcium and CTR. Am J Physiol. 1990;259:F432–7.

    Article  CAS  Google Scholar 

  7. Au WYW, Poland AP, Stern PH. Raisz LG Hormone synthesis and secretion by parathyroid glands in tissue culture. J Clin Invest. 1970;49:1639–46.

    Article  CAS  Google Scholar 

  8. Au WYW. Cortisol stimulation of parathyroid hormone secretion by rat parathyroid glands in organ culture. Science. 1976;193:1015–7.

    Article  CAS  Google Scholar 

  9. Au WYW. Inhibition of 1,25 Dihydroxicholecalciferol of hormonal secretion of rat parathyroid gland in organ culture. Calcif Tissue Int. 1984;36:384–91.

    Article  CAS  Google Scholar 

  10. Almaden Y, Canalejo A, Hernandez A, Ballesteros E, Garcia-Navarro S, Torres A, Rodriguez M. Direct effect of phosphorus on PTH secretion from whole rat parathyroid gland in vitro. J Bone Min Res. 1996;11:970–6.

    Article  CAS  Google Scholar 

  11. Slatopolsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, MacDonald P, Brown A. Phosphorus restriction prevents parathyroid gland growth. High phosphate directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97:2534–40.

    Google Scholar 

  12. Nielsen PK, Feldt-Rasmussen U, Olgaard K. A direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant. 1996;11:1762–8.

    Article  CAS  Google Scholar 

  13. Brown AJ, Ritter CS, Finch JL, Slatopolsky EA. Decreased calcium-sensing receptor expression in hyperplastic parathyroid glands of uremic rats: role of dietary phosphate. Kidney Int. 1999;55:1284–92.

    Article  CAS  Google Scholar 

  14. Kifor O, Moore FD Jr, Wang P, Goldstein M, Vassilev P, Kifor I, Hebert SC, Brown EM. Reduced immunostaining for the extracellular Ca+− sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab. 1996;8:1598–606.

    Google Scholar 

  15. Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E, Drüeke TB. Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney Int. 1997;51:328–36.

    Article  CAS  Google Scholar 

  16. Roussanne MC, Gogusev J, Hory B, Duchambon P, Souberbielle JC, Nabarra B, Pierrat D, Sarfati E, Drueke T, Bourdeau A. Persistence of Ca2+− sensing receptor expression in functionally active, long-term human parathyroid cell cultures. J Bone Miner Res. 1998;13:354–62.

    Article  CAS  Google Scholar 

  17. Sun F, Maercklein P and Fitzpatrick LA: Paracrine interactions among parathyroid cells. Effect of cell density on cell secretion. J Bone Miner Res. 1994;9: 971–6.

    Google Scholar 

  18. Ritter CS, Slatopolsky E, Santoro S, Brown AJ. Parathyroid cells cultured in collagen matrix retain calcium responsiveness: importance of three-dimensional tissue architecture. J Bone Miner Res. 2004;19:491–8.

    Article  Google Scholar 

  19. Almaden Y, Hernandez A, Torregrosa V, Canalejo A, Sabate L, Fernandez Cruz L, Campistol JM, Torres A, Rodriguez M. High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol. 1998;9:1845–52.

    Google Scholar 

  20. Fukuda N, Tanaka H, Tominaga Y, Fukagawa M, Kurokawa K, Seino Y. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest. 1993;92:1436–43.

    Article  CAS  Google Scholar 

  21. Brown EM. Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J Clin Endocrinol Metab. 1983;56:572–81.

    Article  CAS  Google Scholar 

  22. Wallfelt C, Gylfe E, Larsson R, Ljunghall S, Rastad J, Akerström G. Relationship between external and cytoplasmic calcium concentrations, parathyroid hormone release and weight of parathyroid glands in human hyperparathyroidism. J Endocrinol. 1988;116:457–64.

    Article  CAS  Google Scholar 

  23. de Francisco ALM, Cobo MA, Setien MA, Rodrigo E, Frsenedo GF, Unzueta MT, Amado JA, Ruiz JC, Arias M, Rodriguez M. Effect of serum phosphate on parathyroid hormone secretion during hemodialysis. Kidney Int. 1995;54:2140–5.

    Article  Google Scholar 

  24. Estepa JC, Aguilera-Tejero E, Lopez I, Almaden Y, Rodriguez M, Felsenfeld AJ. Effect of phosphate on PTH secretion in vivo. J Bone Min Res. 1999;14:1848–54.

    Article  CAS  Google Scholar 

  25. Martin DR, Ritter CS, Slatopolsky E, Brown AJ. Acute regulation of parathyroid hormone by dietary phosphate. Am J Physiol Endocrinol Metab. 2005;289:E729–34.

    Article  CAS  Google Scholar 

  26. Yi H, Fukagawa M, Yamato H, Kumagai M, Watanabe T, Kurokawa K. Prevention of enhanced parathyroid hormone secretion, synthesis and hyperplasia by mild dietary phosphorus restriction in early chronic renal failure in rats: possible direct role of phosphorus. Nephron. 1995;70:242–8.

    Article  CAS  Google Scholar 

  27. Kilav R, Silver J, Naveh-Many T. Parathyroid hormone gene expression in hypophosphatemic rats. J Clin Invest. 1995;96:327–33.

    Article  CAS  Google Scholar 

  28. Hernández A, Concepción MT, Rodríguez M, Salido E, Torres A. High phosphorus diet increases preproPTH mRNA independent of calcium and calcitriol in normal rats. Kidney Int. 1996;50:1872–8.

    Article  Google Scholar 

  29. Moallem E, Kilav R, Silver J, Naveh-Many T. RNA-Protein binding and post-transcriptional regulation of parathyroid hormone gene expression by calcium and phosphate. J Biol Chem. 1998;273:5253–9.

    Article  CAS  Google Scholar 

  30. Yalcindag C, Silver J, Naveh-Many T. Mechanism of increased parathyroid hormone mRNA in experimental uremia: roles of protein RNA binding and RNA degradation. J Am Soc Nephrol. 1999;10:2562–8.

    CAS  PubMed  Google Scholar 

  31. Kilav R, Bell O, Le SY, Silver J, Naveh-Many T. The parathyroid hormone mRNA 3′-untranslated region AU-rich element is an unstructured functional element. J Biol Chem. 2004;279:2109–16.

    Article  CAS  Google Scholar 

  32. Sela-Brown A, Silver J, Brewer G, Naveh-Many T. Identification of AUF1 as a parathyroid hormone mRNA 3′-untranslated region-binding protein that determines parathyroid hormone mRNA stability. J Biol Chem. 2000;275:7424–9.

    Article  CAS  Google Scholar 

  33. Bell O, Gaberman E, Kilav R, Levi R, Cox KB, Molkentin JD, Silver J, Naveh-Many T. The protein phosphatase calcineurin determines basal parathyroid hormone gene expression. Mol Endocrinol. 2005;19:516–26.

    Article  CAS  Google Scholar 

  34. Dinur M, Kilav R, Sela-Brown A, Jacquemin-Sablon H, Naveh-Many T. In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol. 2006;20:1652–60.

    Article  CAS  Google Scholar 

  35. Nechama M, Ben-Dov IZ, Briata P, Gherzi R, Naveh-Many T. The mRNA decay promoting factor K-homology splicing regulator protein post-transcriptionally determines parathyroid hormone mRNA levels. FASEB J. 2008;22:3458–68. https://doi.org/10.1096/fj.08-107250.

  36. Nechama M, Uchida T, Mor Yosef-Levi I, Silver J, Naveh-Many T. The peptidyl-prolyl isomerase Pin1 determines parathyroid hormone mRNA levels and stability in rat models of secondary hyperparathyroidism. J Clin Invest. 2009;119:3102–14. https://doi.org/10.1172/JCI39522.

  37. Silver J, Naveh-Many T. Phosphate and the parathyroid. Kidney Int. 2009;75:898–905. https://doi.org/10.1038/ki.2008.642.

  38. Naveh-Many T. Minireview: The play of proteins on the parathyroid hormone messenger ribonucleic Acid regulates its expression. Endocrinology. 2010;151:1398–402. https://doi.org/10.1210/en.2009-1160.

  39. Chande S, Bergwitz C. Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol. 2018;14:637–55. https://doi.org/10.1038/s41574-018-0076-3.

  40. Sabbagh, Y. Phosphate as a sensor and signaling molecule. Clin Nephrol. 2013;79:57–65. https://doi.org/10.5414/CN107322.

  41. Chavkin NW, Chia JJ, Crouthamel MH, Giachelli CM. Phosphate uptake- independent signaling functions of the type III sodium-dependent phosphate transporter, PiT-1, in vascular smooth muscle cells. Exp Cell Res. 2015;333:39–48. https://doi.org/10.1016/j.yexcr.2015.02.002.

  42. Geng Y, Mosyak L, Kurinov I, Zuo H, Sturchler E, Cheng TC, Subramanyam P, Brown AP, Brennan SC, Mun HC, Bush M, Chen Y, Nguyen TX, Cao B, Chang DD, Quick M, Conigrave AD, Colecraft HM, McDonald P, Fan QR. Structural mechanism of ligand activation in human calcium-sensing receptor. eLife. 2016;5:e13662. https://doi.org/10.7554/eLife.13662.

  43. Conigrave AD, Mun HC, Delbridge L, Quinn SJ, Wilkinson M, Brown EM. L-amino acids regulate parathyroid hormone secretion. J Biol Chem. 2004;279:38151–9. https://doi.org/10.1074/jbc.M406373200.

  44. Taïbi F, Metzinger-Le Meuth V, M’Baya-Moutoula E, Djelouat MS, Louvet L, Bugnicourt JM, Poirot S, Bengrine A, Chillon JM, Massy ZA, Metzinger L. Possible involvement of microRNAs in vascular damage in experimental chronic kidney disease. Biochim Biophys Acta. 2014;1842:88–98. https://doi.org/10.1016/j.bbadis.2013.10.005.

  45. Metzinger-Le Meuth V, Burtey S, Maitrias P, Massy ZA, Metzinger L. microRNAs in the pathophysiology of CKD-MBD: Biomarkers and innovative drugs. Biochim Biophys Acta Mol Basis Dis. 2017;1863:337–45. https://doi.org/10.1016/j.bbadis.2016.10.027.

  46. Jeong S, Oh JM, Oh KH, Kim IW. Differentially expressed miR-3680-5p is associated with parathyroid hormone regulation in peritoneal dialysis patients. PLoS One. 2017;12:e0170535. https://doi.org/10.1371/journal.pone.0170535.

  47. Rahbari R, Holloway AK, He M, Khanafshar E, Clark OH, Kebebew E. Identification of differentially expressed MicroRNA in parathyroid tumors. Ann Surg Oncol. 2011;18:1158–65. https://doi.org/10.1245/s10434-010-1359-7.

  48. Corbetta S, Vaira V, Guarnieri V, Scillitani A, Eller-Vainicher C, Ferrero S, Vicentini L, Chiodini I, Bisceglia M, Beck-Peccoz P, Bosari S, Spada A. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer. 2010;17:135–46. https://doi.org/10.1677/ERC-09-0134.

  49. Vaira V, Verdelli C, Forno I, Corbetta S. MicroRNAs in parathyroid physiopathology. Mol Cell Endocrinol. 2017;456:9–15. https://doi.org/10.1016/j.mce.2016.10.035.

  50. Shilo V, Ben-Dov IZ, Nechama M, Silver J, Naveh-Many T. Parathyroid-specific deletion of dicer-dependent microRNAs abrogates the response of the parathyroid to acute and chronic hypocalcemia and uremia. FASEB J. 2015;29:3964–76. https://doi.org/10.1096/fj.15-274191.

  51. Shilo V, Mor-Yosef Levi I, Abel R, Mihailović A, Wasserman G, Naveh-Many T, Ben-Dov IZ. Let-7 and MicroRNA-148 regulate parathyroid hormone levels in secondary hyperparathyroidism. J Am Soc Nephrol. 2017;28:2353–63. https://doi.org/10.1681/ASN.2016050585.

  52. Ulbing M, Kirsch AH, Leber B, Lemesch S, Münzker J, Schweighofer N, Hofer D, Trummer O, Rosenkranz AR, Müller H, Eller K, Stadlbauer V, Obermayer-Pietsch B. MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation. Bone. 2017;95:115–23. https://doi.org/10.1016/j.bone.2016.11.016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canalejo, A., Rodríguez, M., Almadén, Y. (2020). PTH Regulation by Phosphate and miRNAs. In: Covic, A., Goldsmith, D., Ureña Torres, P. (eds) Parathyroid Glands in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43769-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43769-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43768-8

  • Online ISBN: 978-3-030-43769-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics