Skip to main content

The Role of the Old and the New Calcimimetic Agents in Chronic Kidney Disease-Mineral and Bone Disorder

  • Chapter
  • First Online:
Parathyroid Glands in Chronic Kidney Disease

Abstract

Secondary hyperparathyroidism (SHPT) is associated with increased bone turnover, risk of fractures, vascular calcifications, cardiovascular and all-cause mortality. The classical treatment for SHPT includes active vitamin D compounds and phosphate binders. However, achieving the optimal laboratory targets is often difficult because vitamin D sterols suppress PTH secretion, but also promote calcium and phosphate intestinal absorption. Calcimimetics increase the sensitivity of calcium sensing receptor so that even with lower levels of extracellular calcium a signal can still exist, leading to the decrease of the set-point for systemic calcium homeostasis. This enables a decrease in plasma PTH levels, and consequently of calcium levels. Cinacalcet was the first calcimimetic approved for clinical use. After more than 15 years from its approval, cinacalcet demonstrated that effectively reduces PTH and improves biochemical control of mineral and bone disorders in chronic kidney patients. Three randomized controlled trials analyzed cinacalcet treatment effects on hard clinical outcomes such as vascular calcification, bone histology and cardiovascular mortality and morbidity. However, a final conclusion on the effect of cinacalcet on hard outcomes remains elusive. Etelcalcetide is a new second generation intra-venously administered calcimimetic agent with a pharmacokinetic profile that allows thrice-weekly dosing at the time of hemodialysis. It was recently approved in Europe and is regarded as a second opportunity to improve outcomes optimizing the treatment for SHPT. Evocalcet is the newly developed oral calcimimetic agent with less gastrointestinal adverse effects than cinacalcet and may be an alternative option for the treatment of secondary hyperparathyroidism in dialysis patients. This chapter summarizes the impact of cinacalcet in biochemical and relevant clinical outcomes, discusses the possible implications of etelcalcetide in the quest for improving outcomes and review the available data of the new oral calcimimetic evocalcet.

In preparation of this book chapter, we used previously published material, with permission (Licence number 4463751218679)—Review Paper “Old and new calcimimetics for treatment of secondary hyperparathyroidism: impact on biochemical and relevant clinical outcomes”; authors Luciano Pereira, Catarina Meng, Daniela Marques and João M. Frazão; Clinical Kidney Journal, 2018, vol 11, no.1, 80–88.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260–72.

    Article  PubMed  Google Scholar 

  2. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009; (113):S1–130.

    Google Scholar 

  3. Diniz H, Frazao JM. The role of fibroblast growth factor 23 in chronic kidney disease-mineral and bone disorder. Nefrologia. 2013;33(6):835–44.

    PubMed  Google Scholar 

  4. Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006;70(4):771–80.

    Article  CAS  PubMed  Google Scholar 

  5. Tentori F, Wang M, Bieber BA, et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol. 2015;10(1):98–109.

    Article  CAS  PubMed  Google Scholar 

  6. Danese MD, Belozeroff V, Smirnakis K, Rothman KJ. Consistent control of mineral and bone disorder in incident hemodialysis patients. Clin J Am Soc Nephrol. 2008;3(5):1423–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rodriguez M, Goodman WG, Liakopoulos V, Messa P, Wiecek A, Cunningham J. The use of calcimimetics for the treatment of secondary hyperparathyroidism: a 10 year evidence review. Semin Dial. 2015;28(5):497–507.

    Article  PubMed  Google Scholar 

  8. Harrington PE, Fotsch C. Calcium sensing receptor activators: calcimimetics. Curr Med Chem. 2007;14(28):3027–34.

    Article  CAS  PubMed  Google Scholar 

  9. St Peter WL, Li Q, Liu J, et al. Cinacalcet use patterns and effect on laboratory values and other medications in a large dialysis organization, 2004 through 2006. Clin J Am Soc Nephrol. 2009;4(2):354–60.

    Google Scholar 

  10. Frazao J, Rodriguez M. Secondary hyperparathyroidism disease stabilization following calcimimetic therapy. NDT Plus. 2008;1(Suppl 1):i12–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lindberg JS, Culleton B, Wong G, et al. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol. 2005;16(3):800–7.

    Article  CAS  PubMed  Google Scholar 

  12. Block GA, Martin KJ, de Francisco AL, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350(15):1516–25.

    Article  CAS  PubMed  Google Scholar 

  13. Blair HA. Etelcalcetide: First global approval. Drugs. 2016;76(18):1787–92.

    Article  CAS  PubMed  Google Scholar 

  14. Fukagawa M, Shimazaki R, Akisawa T, Evocalcet study group. Head to head comparison of the new calcimimetic agent evocalcet with cinacalcet in Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 2018;94(4):818–25.

    Google Scholar 

  15. Goodman WG, Hladik GA, Turner SA, et al. The Calcimimetic agent AMG 073 lowers plasma parathyroid hormone levels in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol. 2002;13(4):1017–24.

    CAS  PubMed  Google Scholar 

  16. Moe SM, Chertow GM, Coburn JW, et al. Achieving NKF-K/DOQI bone metabolism and disease treatment goals with cinacalcet HCl. Kidney Int. 2005;67(2):760–71.

    Article  CAS  PubMed  Google Scholar 

  17. Strippoli GF, Palmer S, Tong A, Elder G, Messa P, Craiq JC. Meta-analysis of biochemical and patient-level effects of calcimimetic therapy. Am J Kidney Dis. 2005;47(5):715–26.

    Google Scholar 

  18. Stubbs JR, Wetmore JB. Does it matter how parathyroid hormone levels are suppressed in secondary hyperparathyroidism? Semin Dial. 2011;24(3):298–306.

    Article  PubMed  Google Scholar 

  19. Komaba H, Nakanishi S, Fujimori A, et al. Cinacalcet effectively reduces parathyroid hormone secretion and gland volume regardless of pretreatment gland size in patients with secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2010;5(12):2305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meola M, Petrucci I, Barsotti G. Long-term treatment with cinacalcet and conventional therapy reduces parathyroid hyperplasia in severe secondary hyperparathyroidism. Nephrol Dial Transpl. 2009;24(3):982–9.

    Article  CAS  Google Scholar 

  21. Olgaard K et al. The spectrum of mineral and bone disorders in chronic kidney disease, vol. 26. New York: Oxford University Press;2010. p. 443–58.

    Google Scholar 

  22. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fliser D, Kollerits B, Neyer U, et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007;18(9):2600–8.

    Article  CAS  PubMed  Google Scholar 

  24. Nasrallah MM, El-Shehaby AR, Salem MM, Osman NA, El Sheikh E, Sharaf El Din UA. Fibroblast growth factor-23 (FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transpl. 2010;25(8):2679–85.

    Google Scholar 

  25. Gutierrez OM, Januzzi JL, Isakova T, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119(19):2545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seiler S, Reichart B, Roth D, Seibert E, Fliser D, Heine GH. FGF-23 and future cardiovascular events in patients with chronic kidney disease before initiation of dialysis treatment. Nephrol Dial Transpl. 2010;25(12):3983–9.

    Article  CAS  Google Scholar 

  27. Nakano C, Hamano T, Fujii N, et al. Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis. Bone. 2012;50(6):1266–74.

    Article  CAS  PubMed  Google Scholar 

  28. Kim HJ, Kim H, Shin N, et al. Cinacalcet lowering of serum fibroblast growth factor-23 concentration may be independent from serum Ca, P, PTH and dose of active vitamin D in peritoneal dialysis patients: a randomized controlled study. BMC Nephrol. 2013;14:112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fishbane S, Shapiro WB, Corry DB, et al. Cinacalcet HCl and concurrent low-dose vitamin D improves treatment of secondary hyperparathyroidism in dialysis patients compared with vitamin D alone: the ACHIEVE study results. Clin J Am Soc Nephrol. 2008;3(6):1718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wetmore JB, Liu S, Krebill R, Menard R, Quarles LD. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin J Am Soc Nephrol. 2010;5(1):110–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuczera P, Adamczak M, Wiecek A. Cinacalcet treatment decreases plasma fibroblast growth factor 23 concentration in haemodialysed patients with chronic kidney disease and secondary hyperparathyroidism. Clin Endocrinol (Oxf). 2014;80(4):607–12.

    Article  CAS  Google Scholar 

  32. Moe SM, Chertow GM, Parfrey PS, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation. 2015;132(1):27–39.

    Article  CAS  PubMed  Google Scholar 

  33. Nickolas TL, McMahon DJ, Shane E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol. 2006;17(11):3223–32.

    Article  PubMed  Google Scholar 

  34. Kaji H, Suzuki M, Yano S, et al. Risk factors for hip fracture in hemodialysis patients. Am J Nephrol. 2002;22(4):325–31.

    Article  PubMed  Google Scholar 

  35. Tentori F, McCullough K, Kilpatrick RD, et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85(1):166–73.

    Article  PubMed  Google Scholar 

  36. Malluche HH, Porter DS, Monier-Faugere MC, Mawad H, Pienkowski D. Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol. 2012;23(3):525–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iimori S, Mori Y, Akita W, et al. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients—a single-center cohort study. Nephrol Dial Transpl. 2012;27(1):345–51.

    Article  CAS  Google Scholar 

  38. Cunningham J, Danese M, Olson K, Klassen P, Chertow GM. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68(4):1793–800.

    Article  CAS  PubMed  Google Scholar 

  39. Moe SM, Abdalla S, Chertow GM, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol. 2015;26(6):1466–75.

    Article  CAS  PubMed  Google Scholar 

  40. Malluche HH, Monier-Faugere MC, Wang G, et al. An assessment of cinacalcet HCl effects on bone histology in dialysis patients with secondary hyperparathyroidism. Clin Nephrol. 2008;69(4):269–78.

    Article  CAS  PubMed  Google Scholar 

  41. Behets GJ, Spasovski G, Sterling LR, et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015;87(4):846–56.

    Article  CAS  PubMed  Google Scholar 

  42. Ketteler M, Block GA, Evenepoel P, et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92(1):26–36.

    Article  PubMed  Google Scholar 

  43. Tsuruta Y, Okano K, Kikuchi K, Tsuruta Y, Akiba T, Nitta K. Effects of cinacalcet on bone mineral density and bone markers in hemodialysis patients with secondary hyperparathyroidism. Clin Exp Nephrol. 2013;17:120–p126.

    Article  CAS  PubMed  Google Scholar 

  44. Lien YH, Silva AL, Whittman D. Effects of cinacalcet on bone mineral density in patients with secondary hyperparathyroidism. Nephrol Dial Transpl. 2005;20:1232–7.

    Article  CAS  Google Scholar 

  45. Mitsopoulos E, Ginikopoulou E, Economidou D, et al. Impact of long-term cinacalcet, ibandronate or teriparatide therapy on bone mineral density of hemodialysis patients: a pilot study. Am J Nephrol. 2012;36:238–44.

    Article  CAS  PubMed  Google Scholar 

  46. Nakayama K, Nakao K, Takatori Y, et al. Long-term effect of cinacalcet hydrochloride on abdominal aortic calcification in patients on hemodialysis with secondary hyperparathyroidism. Int J Nephrol Renovasc Dis. 2013;7:25–33.

    PubMed  PubMed Central  Google Scholar 

  47. Tsuruta Y, Ohbayashi T, Fujii M, et al. Change in coronary artery calcification score due to cinacalcet hydrochloride administration. Ther Apher Dial. 2008;12(Suppl 1):S34–7.

    Article  PubMed  Google Scholar 

  48. Raggi P, Chertow GM, Torres PU, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transpl. 2011;26(4):1327–39.

    Article  CAS  Google Scholar 

  49. Urena-Torres PA, Floege J, Hawley CM, et al. Protocol adherence and the progression of cardiovascular calcification in the ADVANCE study. Nephrol Dial Transpl. 2013;28(1):146–52.

    Article  CAS  Google Scholar 

  50. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15(8):2208–18.

    Article  CAS  PubMed  Google Scholar 

  51. Floege J, Kim J, Ireland E, et al. Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transpl. 2011;26(6):1948–55.

    Article  CAS  Google Scholar 

  52. Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Block GA, Zaun D, Smits G, et al. Cinacalcet hydrochloride treatment significantly improves all-cause and cardiovascular survival in a large cohort of hemodialysis patients. Kidney Int. 2010;78(6):578–89.

    Article  CAS  PubMed  Google Scholar 

  54. Akizawa T, Kurita N, Mizobuchi M, et al. PTH-dependence of the effectiveness of cinacalcet in hemodialysis patients with secondary hyperparathyroidism. Sci Rep. 2016;6:19612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gillespie IA, Floege J, Gioni I, et al. Propensity score matching and persistence correction to reduce bias in comparative effectiveness: the effect of cinacalcet use on all-cause mortality. Pharmacoepidemiol Drug Saf. 2015;24(7):738–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chertow GM, Block GA, Correa-Rotter R, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367(26):2482–94.

    Article  CAS  PubMed  Google Scholar 

  57. Parfrey PS, Drueke TB, Block GA, et al. The Effects of cinacalcet in older and younger patients on hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Clin J Am Soc Nephrol. 2015;10(5):791–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Palmer SC, Nistor I, Craig JC, et al. Cinacalcet in patients with chronic kidney disease: a cumulative meta-analysis of randomized controlled trials. PLoS Med. 2013;10(4):e1001436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Alexander ST, Hunter T, Walter S, et al. Critical cysteine residues in both the calcium-sensing receptor and the allosteric activator AMG 416 underlie the mechanism of action. Mol Pharmacol. 2015;88(5):853–65.

    Article  CAS  PubMed  Google Scholar 

  60. Walter S, Baruch A, Dong J, et al. Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther. 2013;346(2):229–40.

    Article  CAS  PubMed  Google Scholar 

  61. Chen P, Melhem M, Xiao J, Kuchimanchi M, Perez Ruixo JJ. Population pharmacokinetics analysis of AMG 416, an allosteric activator of the calcium-sensing receptor, in subjects with secondary hyperparathyroidism receiving hemodialysis. J Clin Pharmacol. 2015;55(6):620–8.

    Google Scholar 

  62. Subramanian R, Zhu X, Kerr SJ, et al. Nonclinical pharmacokinetics, disposition, and drug-drug interaction potential of a novel d-amino acid peptide agonist of the calcium-sensing receptor AMG 416 (Etelcalcetide). Drug Metab Dispos. 2016;44(8):1319–31.

    Article  CAS  PubMed  Google Scholar 

  63. Kroenke MA, Weeraratne DK, Deng H, et al. Clinical immunogenicity of the d-amino acid peptide therapeutic etelcalcetide: Method development challenges and anti-drug antibody clinical impact assessments. J Immunol Methods. 2017;445:37–44.

    Article  CAS  PubMed  Google Scholar 

  64. Block GA, Bushinsky DA, Cunningham J, et al. Effect of etelcalcetide vs placebo on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: two randomized clinical trials. JAMA. 2017;317(2):146–55.

    Article  CAS  PubMed  Google Scholar 

  65. Block GA, Bushinsky DA, Cheng S, et al. Effect of etelcalcetide vs cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA. 2017;317(2):156–64.

    Article  CAS  PubMed  Google Scholar 

  66. Fukagawa M, Yokoyama K, Shigematsu T, et al. A phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of etelcalcetide (ONO-5163/AMG 416), a novel intravenous calcimimetic, for secondary hyperparathyroidism in Japanese haemodialysis patients. Nephrol Dial Transpl. 2017;10:1723–30.

    Google Scholar 

  67. Yoshimura K, Funakoshi Y, Terawaki H. Dramatic regression of parathyroid gland swelling after conversion of calcimimetic medication from cinacalcet to etelcalcetide. Ther Apher Dial. 2018;22(5):553–4.

    Article  PubMed  Google Scholar 

  68. Mima A, Tansho K, Nagahara D, Watase K. Treatment of secondary hyperparathyroidism in patients on hemodialysis using a novel synthetic peptide calcimimetic, etelcalcetide: a short-term clinical study. J Int Med Res. 2018;46(11):4578–85.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ye J, Deng G, Gao F. Theoretical overview of clinical and pharmacological aspects of the use of etelcalcetide in diabetic patients undergoing hemodialysis. Drug Des Devel Ther. 2018;12:901–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raggi P, Bommer J, Chertow GM. Valvular calcification in hemodialysis patients randomized to calcium-based phosphorus binders or sevelamer. J Heart Valve Dis. 2004;13:134–41.

    PubMed  Google Scholar 

  71. Spiegel DM, Brady K. Calcium balance in normal individuals and in patients with chronic kidney disease on low- and high-calcium diets. Kidney Int. 2012;81:1116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chonchol M, Locatelli F, Abboud HE, et al. A randomized double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet HCl in participants with CKD not receiving dialysis. Am J Kid Dis. 2009;53:197–207.

    Article  CAS  PubMed  Google Scholar 

  73. Floege J, et al. Incidence, predictors and therapeutic consequences of hypocalcemia in patients treated with cinacalcet in the EVOLVE trial. Kidney Int. 2018;93(6):1475–82.

    Article  CAS  PubMed  Google Scholar 

  74. Kawata T, et al. A novel calcimimetic agent, evocalcet (MT-4580/KHK7580) suppresses the parathyroid cell function with litlle effect on the gastrointestinal tract or CYP isozymes in vivo and in vitro. PLoS ONE. 2018;13(4):e0195316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. Frazão .

Editor information

Editors and Affiliations

Ethics declarations

Luciano Pereira received speaker honoraria and travel grant from Amgen. João Frazão received consulting, speaker and travel honoraria from Amgen.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira, L., Frazão, J.M. (2020). The Role of the Old and the New Calcimimetic Agents in Chronic Kidney Disease-Mineral and Bone Disorder. In: Covic, A., Goldsmith, D., Ureña Torres, P. (eds) Parathyroid Glands in Chronic Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-43769-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43769-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43768-8

  • Online ISBN: 978-3-030-43769-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics