Skip to main content

Dynamic Compartmental Models for Large Multi-objective Landscapes and Performance Estimation

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2020)

Abstract

Dynamic Compartmental Models are linear models inspired by epidemiology models to study Multi- and Many-Objective Evolutionary Algorithms dynamics. So far they have been tested on small MNK-Landscapes problems with 20 variables and used as a tool for algorithm analysis, algorithm comparison, and algorithm configuration assuming that the Pareto optimal set is known. In this paper, we introduce a new set of features based only on when non-dominated solutions are found in the population, relaxing the assumption that the Pareto optimal set is known in order to use Dynamic Compartment Models on larger problems. We also propose an auxiliary model to estimate the hypervolume from the features of population dynamics that measures the changes of new non-dominated solutions in the population. The new features are tested by studying the population changes on the Adaptive \(\epsilon \)-Sampling \(\epsilon \)-Hood while solving 30 instances of a 3 objective, 100 variables MNK-landscape problem. We also discuss the behavior of the auxiliary model and the quality of its hypervolume estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguirre, H., Oyama, A., Tanaka, K.: Adaptive \(\epsilon \)-sampling and \(\epsilon \)-hood for evolutionary many-objective optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 322–336. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_26

    Chapter  Google Scholar 

  2. Aguirre, H., Tanaka, K.: Insights on properties of multiobjective MNK-landscapes. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), vol. 1, pp. 196–203, June 2004

    Google Scholar 

  3. Elzhov, T., Mullen, K., Spiess, A., Bolker, B.: minpack. lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds (ver. 1.2-0) r package (2015)

    Google Scholar 

  4. Godfrey, K.: Compartmental Models and Their Application. Academic Press, Cambridge (1983)

    Google Scholar 

  5. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning, vol. 112. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  6. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  7. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  8. Monzón, H., Aguirre, H., Verel, S., Liefooghe, A., Derbel, B., Tanaka, K.: Dynamic compartmental models for algorithm analysis and population size estimation. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 2044–2047. ACM (2019)

    Google Scholar 

  9. Monzón, H., Aguirre, H.E., Verel, S., Liefooghe, A., Derbel, B., Tanaka, K.: Closed state model for understanding the dynamics of MOEAs. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, 15–19 July 2017, pp. 609–616 (2017)

    Google Scholar 

  10. Noorian, F., de Silva, A.M., Leong, P.H.W.: gramEvol: grammatical evolution in R. J. Stat. Softw. 71(1), 1–26 (2016). https://doi.org/10.18637/jss.v071.i01

    Article  Google Scholar 

  11. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo Monzón or Hernán Aguirre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monzón, H., Aguirre, H., Verel, S., Liefooghe, A., Derbel, B., Tanaka, K. (2020). Dynamic Compartmental Models for Large Multi-objective Landscapes and Performance Estimation. In: Paquete, L., Zarges, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2020. Lecture Notes in Computer Science(), vol 12102. Springer, Cham. https://doi.org/10.1007/978-3-030-43680-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43680-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43679-7

  • Online ISBN: 978-3-030-43680-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics