Skip to main content

Cooperative Parallel SAT Local Search with Path Relinking

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2020)

Abstract

In this paper, we propose the use of path relinking to improve the performance of parallel portfolio-based local search solvers for the Boolean Satisfiability problem. In the portfolio-based framework several algorithms explore the search space in parallel, either independently or cooperatively with some communication between the solvers. Path relinking is a method to maintain an appropriate balance between diversification and intensification (and explore paths that aggregate elite solutions) to properly craft a new assignment for the variables to restart from. We present an empirical study that suggest that path relinking outperforms a set of well-known parallel portfolio-based local search algorithms with and without cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    n denotes the number of variables in the problem.

  2. 2.

    https://satcompetition.org/.

  3. 3.

    Please notice that AG2 only reports two cooperative policies as Prob is the winner strategy.

  4. 4.

    In this paper, we use the implementation of Dist, CCEHC, CCLS, Prob and PNorm available in the SAT competitions and the website of the authors.

References

  1. Arbelaez, A., Codognet, P.: From sequential to parallel local search for SAT. In: Middendorf, M., Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 157–168. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37198-1_14

    Chapter  Google Scholar 

  2. Arbelaez, A., Hamadi, Y.: Improving parallel local search for SAT. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 46–60. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_4

    Chapter  Google Scholar 

  3. Arbelaez, A., Hamadi, Y., Sebag, M.: Continuous search in constraint programming. In: Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 219–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9_9

    Chapter  Google Scholar 

  4. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: GECCO, pp. 11–18 (2002)

    Google Scholar 

  5. Cai, S., Luo, C., Lin, J., Su, K.: New local search methods for partial MaxSAT. Artif. Intell. 240, 1–18 (2016)

    Article  MathSciNet  Google Scholar 

  6. Glover, F.: Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Appl. Math. 49(1–3), 231–255 (1994)

    Article  MathSciNet  Google Scholar 

  7. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4), 245–262 (2009)

    MATH  Google Scholar 

  8. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: AAAI/IAAI, pp. 655–660 (2002)

    Google Scholar 

  9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the empirical evaluation of competing algorithm designs. Ann. Math. Artif. Intell. 60(1–2), 65–89 (2010)

    Article  MathSciNet  Google Scholar 

  10. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

    Article  Google Scholar 

  11. Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72788-0_15

    Chapter  Google Scholar 

  12. Luo, C., Cai, S., Su, K., Huang, W.: CCEHC: an efficient local search algorithm for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)

    Article  MathSciNet  Google Scholar 

  13. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algorithm for weighted maximum satisfiability. IEEE Trans. Comput. 64(7), 1830–1843 (2015)

    Article  MathSciNet  Google Scholar 

  14. Martins, R., Manquinho, V.M., Lynce, I.: An overview of parallel SAT solving. Constraints 17(3), 304–347 (2012)

    Article  MathSciNet  Google Scholar 

  15. Roli, A.: Criticality and parallelism in structured SAT instances. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 714–719. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3_51

    Chapter  Google Scholar 

  16. Roli, A., Blesa, M.J., Blum, C.: Random walk and parallelism in local search. In: Metaheuristic International Conference (MIC 2005), Vienna, Austria (2005)

    Google Scholar 

  17. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In: AAAI, pp. 337–343 (1994)

    Google Scholar 

  18. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard satisfiability problems. In: AAAI 1996, pp. 440–446 (1996)

    Google Scholar 

  19. Strickland, D.M., Barnes, E.R., Sokol, J.S.: Optimal protein structure alignment using maximum cliques. Oper. Res. 53(3), 389–402 (2005)

    Article  MathSciNet  Google Scholar 

  20. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative clause weighting for SAT. In: AAAI. pp. 191–196 (2004)

    Google Scholar 

  21. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 306–320. Springer, Heidelberg (2005). https://doi.org/10.1007/11527695_24

    Chapter  MATH  Google Scholar 

  22. Vasquez, M., Hao, J.: A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth observation satellite. Comput. Optim. Appl. 20(2), 137–157 (2001)

    Article  MathSciNet  Google Scholar 

  23. Zhang, L., Bacchus, F.: MAXSAT heuristics for cost optimal planning. In: AAAI 2012 (2012)

    Google Scholar 

  24. Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum satisfiability. In: IJCAI 2003, pp. 1179–1186 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Arbelaez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jarvis, P., Arbelaez, A. (2020). Cooperative Parallel SAT Local Search with Path Relinking. In: Paquete, L., Zarges, C. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2020. Lecture Notes in Computer Science(), vol 12102. Springer, Cham. https://doi.org/10.1007/978-3-030-43680-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43680-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43679-7

  • Online ISBN: 978-3-030-43680-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics