Skip to main content

Ultrasound-Assisted Electrolytic Hydrogen Production

  • Chapter
  • First Online:
Micro-Optics and Energy

Abstract

The search for alternative, pollution-free and efficient energy sources has given rise to the concept of the Hydrogen Economy [1]. H2 as an energy carrier is particularly attractive due to its very high specific energy (39.40 kWh/kg) compared to other conventional fossil fuels, as shown in Table 7.1. The production of electrolytic H2 from water in the presence of ultrasound is seen as a promising method to produce clean H2 [2, 3]. In this chapter, the production of H2 through the sonoelectrochemical method, along with a brief description of current H2 production methods, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coutanceau C, Baranton S, Audichon T (2018) Hydrogen electrochemical production. In: Pollet BG (ed) Hydrogen electrochemical production. Academic, Cambridge, 1–6 p

    Google Scholar 

  2. Pollet BG (2012) Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. Wiley, Chichester, 1–344 p

    Google Scholar 

  3. Lamb JJ, Islam MH, Hjelme DR, Pollet BG, Lien KM (2019) Effect of power ultrasound and Fenton reagents on the biomethane potential from steam-exploded birchwood. Ultrasonics Sonochem 58:104675

    Google Scholar 

  4. Islam MH, Lamb JJ, Lien KM, Burheim OS, Hihn J-Y, Pollet BG (2019) Novel fuel production based on sonochemistry and sonoelectrochemistry. Meeting Abstracts - The Electrochemical Society [ECS] ( ISSN 1091-8213)

    Google Scholar 

  5. Merouani S, Hamdaoui O (2016) The size of active bubbles for the production of hydrogen in sonochemical reaction field. Ultrason Sonochem 32:320–327

    Article  CAS  Google Scholar 

  6. Pollet BG (2012) Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. In: Pollet BG (ed) Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. Wiley, Chichester, 1–344 p

    Google Scholar 

  7. Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. Conf Pap Energy 2013:9

    Google Scholar 

  8. Demirbas MF (2006) Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sources, Part A Recover Util Environ Eff 28(3):245–252

    Article  CAS  Google Scholar 

  9. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29(2):173–185

    Article  CAS  Google Scholar 

  10. Lamb JJ, Pollet BG, Burheim OS (2020) Energy storage. In: Energy-smart buildings design: construction and monitoring of buildings for improved energy efficiency. https://doi.org/10.1088/978-0-7503-3259-0ch6

  11. Ivy J (2004) Summary of electrolytic hydrogen production milestone completion report. National Renewable Energy Laboratory

    Google Scholar 

  12. Hujjatul Islam M, Paul MTY, Burheim OS, Pollet BG (2019) Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrason Sonochem 59:104711

    Article  CAS  Google Scholar 

  13. Pollet BG, Hihn J-Y, Doche M-L, Lorimer JP, Mandroyan A, Mason TJ (2007) Transport limited currents close to an ultrasonic horn. J Electrochem Soc 154(10):E131

    Article  CAS  Google Scholar 

  14. Mason TJ (1990) Sonochemistry: the uses of ultrasound in chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  15. Wang M, Wang Z, Gong X, Guo Z (2014) The intensification technologies to water electrolysis for hydrogen production – a review. Renew Sust Energ Rev 29:573–588

    Article  CAS  Google Scholar 

  16. Zadeh SH (2014) Hydrogen production via ultrasound-aided alkaline water electrolysis. J Autom Control Eng 2(1):103–109

    Article  Google Scholar 

  17. Dukovic J, Tobias CW (1987) The influence of attached bubbles on potential drop and current distribution at gas-evolving electrodes. J Electrochem Soc 134(2):331

    Article  CAS  Google Scholar 

  18. Walton DJ, Burke LD, Murphy MM (1996) Sonoelectrochemistry: and oxygen evolution chlorine, hydrogen at platinised platinum. Electrochim Acta 41(17):2747–2751

    Article  CAS  Google Scholar 

  19. McMurray HN (1998) Hydrogen evolution and oxygen reduction at a titanium sonotrode. Chem Commun 8:887–888

    Article  Google Scholar 

  20. Moriguchi N (1934) The influence of supersonic waves on chemical phenomena. III The influence on the concentration polarisation. Nippon Kagaku Kaishi 55(8):749–750

    Article  CAS  Google Scholar 

  21. Pollet B, Lorimer JP, Phull SS, Mason TJ, Walton DJ, Hihn JY et al (1999) The effect of ultrasonic frequency and intensity upon electrode kinetic parameters for the Ag(S2O3)23−/Ag redox couple. J Appl Electrochem 29(12):1359–1366

    Article  CAS  Google Scholar 

  22. Cataldo F (1992) Effects of ultrasound on the yield of hydrogen and chlorine during electrolysis of aqueous solutions of NaCl or HCl. J Electroanal Chem 332(1–2):325–331

    Article  CAS  Google Scholar 

  23. Symes D (2011) Sonoelectrochemical (20 kHz) production of hydrogen from aqueous solutions. The University of Birmingham, Birmingham

    Google Scholar 

  24. González-Cobos J, Baranton S, Coutanceau C (2016) Development of bi-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals. ChemElectroChem 3:1694–1704

    Article  Google Scholar 

  25. De Li S, Wang CC, Chen CY (2009) Water electrolysis in the presence of an ultrasonic field. Electrochim Acta 54(15):3877–3883

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the ENERSENSE programme and NTNU Team Hydrogen at the Norwegian University of Science and Technology (NTNU) for supporting and helping on this book project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob J. Lamb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, M.H., Lamb, J.J., Burheim, O.S., Pollet, B.G. (2020). Ultrasound-Assisted Electrolytic Hydrogen Production. In: Lamb, J., Pollet, B. (eds) Micro-Optics and Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-43676-6_7

Download citation

Publish with us

Policies and ethics